1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
use std::os::unix::io::AsRawFd;
use std::sync::atomic::Ordering;
use std::sync::Arc;
use std::time::Duration;

use super::soft_pwm::SoftPwm;
use crate::gpio::{interrupt::AsyncInterrupt, Bias, GpioState, Level, Mode, Result, Trigger};

const NANOS_PER_SEC: f64 = 1_000_000_000.0;

macro_rules! impl_pin {
    () => {
        /// Returns the GPIO pin number.
        ///
        /// Pins are addressed by their BCM numbers, rather than their physical location.
        #[inline]
        pub fn pin(&self) -> u8 {
            self.pin.pin
        }
    };
}

macro_rules! impl_input {
    () => {
        /// Reads the pin's logic level.
        #[inline]
        pub fn read(&self) -> Level {
            self.pin.read()
        }

        /// Reads the pin's logic level, and returns `true` if it's set to [`Low`].
        ///
        /// [`Low`]: enum.Level.html#variant.Low
        #[inline]
        pub fn is_low(&self) -> bool {
            self.pin.read() == Level::Low
        }

        /// Reads the pin's logic level, and returns `true` if it's set to [`High`].
        ///
        /// [`High`]: enum.Level.html#variant.High
        #[inline]
        pub fn is_high(&self) -> bool {
            self.pin.read() == Level::High
        }
    };
}

macro_rules! impl_output {
    () => {
        /// Sets the pin's output state.
        #[inline]
        pub fn write(&mut self, level: Level) {
            self.pin.write(level)
        }

        /// Sets the pin's output state to [`Low`].
        ///
        /// [`Low`]: enum.Level.html#variant.Low
        #[inline]
        pub fn set_low(&mut self) {
            self.pin.set_low()
        }

        /// Sets the pin's output state to [`High`].
        ///
        /// [`High`]: enum.Level.html#variant.High
        #[inline]
        pub fn set_high(&mut self) {
            self.pin.set_high()
        }

        /// Toggles the pin's output state between [`Low`] and [`High`].
        ///
        /// [`Low`]: enum.Level.html#variant.Low
        /// [`High`]: enum.Level.html#variant.High
        #[inline]
        pub fn toggle(&mut self) {
            if self.pin.read() == Level::Low {
                self.set_high();
            } else {
                self.set_low();
            }
        }

        /// Configures a software-based PWM signal.
        ///
        /// `period` indicates the time it takes to complete one cycle.
        ///
        /// `pulse_width` indicates the amount of time the PWM signal is active during a
        /// single period.
        ///
        /// Software-based PWM is inherently inaccurate on a multi-threaded OS due to
        /// scheduling/preemption. If an accurate or faster PWM signal is required, use the
        /// hardware [`Pwm`] peripheral instead. More information can be found [here].
        ///
        /// If `set_pwm` is called when a PWM thread is already active, the existing thread
        /// will be reconfigured at the end of the current cycle.
        ///
        /// [`Pwm`]: ../pwm/struct.Pwm.html
        /// [here]: index.html#software-based-pwm
        pub fn set_pwm(&mut self, period: Duration, pulse_width: Duration) -> Result<()> {
            if let Some(ref mut soft_pwm) = self.soft_pwm {
                soft_pwm.reconfigure(period, pulse_width);
            } else {
                self.soft_pwm = Some(SoftPwm::new(
                    self.pin.pin,
                    self.pin.gpio_state.clone(),
                    period,
                    pulse_width,
                ));
            }

            // Store frequency/duty cycle for the embedded-hal PwmPin implementation.
            #[cfg(feature = "hal")]
            {
                let period_s =
                    period.as_secs() as f64 + (f64::from(period.subsec_nanos()) / NANOS_PER_SEC);
                let pulse_width_s = pulse_width.as_secs() as f64
                    + (f64::from(pulse_width.subsec_nanos()) / NANOS_PER_SEC);

                if period_s > 0.0 {
                    self.frequency = 1.0 / period_s;
                    self.duty_cycle = (pulse_width_s / period_s).min(1.0);
                } else {
                    self.frequency = 0.0;
                    self.duty_cycle = 0.0;
                }
            }

            Ok(())
        }

        /// Configures a software-based PWM signal.
        ///
        /// `set_pwm_frequency` is a convenience method that converts `frequency` to a period and
        /// `duty_cycle` to a pulse width, and then calls [`set_pwm`].
        ///
        /// `frequency` is specified in hertz (Hz).
        ///
        /// `duty_cycle` is specified as a floating point value between `0.0` (0%) and `1.0` (100%).
        ///
        /// [`set_pwm`]: #method.set_pwm
        pub fn set_pwm_frequency(&mut self, frequency: f64, duty_cycle: f64) -> Result<()> {
            let period = if frequency <= 0.0 {
                0.0
            } else {
                (1.0 / frequency) * NANOS_PER_SEC
            };
            let pulse_width = period * duty_cycle.max(0.0).min(1.0);

            self.set_pwm(
                Duration::from_nanos(period as u64),
                Duration::from_nanos(pulse_width as u64),
            )
        }

        /// Stops a previously configured software-based PWM signal.
        ///
        /// The thread responsible for emulating the PWM signal is stopped at the end
        /// of the current cycle.
        pub fn clear_pwm(&mut self) -> Result<()> {
            if let Some(mut soft_pwm) = self.soft_pwm.take() {
                soft_pwm.stop()?;
            }

            Ok(())
        }
    };
}

macro_rules! impl_reset_on_drop {
    () => {
        /// Returns the value of `reset_on_drop`.
        pub fn reset_on_drop(&self) -> bool {
            self.reset_on_drop
        }

        /// When enabled, resets the pin's mode to its original state and disables the
        /// built-in pull-up/pull-down resistors when the pin goes out of scope.
        /// By default, this is set to `true`.
        ///
        /// ## Note
        ///
        /// Drop methods aren't called when a process is abnormally terminated, for
        /// instance when a user presses <kbd>Ctrl</kbd> + <kbd>C</kbd>, and the `SIGINT` signal
        /// isn't caught. You can catch those using crates such as [`simple_signal`].
        ///
        /// [`simple_signal`]: https://crates.io/crates/simple-signal
        pub fn set_reset_on_drop(&mut self, reset_on_drop: bool) {
            self.reset_on_drop = reset_on_drop;
        }
    };
}

macro_rules! impl_drop {
    ($struct:ident) => {
        impl Drop for $struct {
            /// Resets the pin's mode and disables the built-in pull-up/pull-down
            /// resistors if `reset_on_drop` is set to `true` (default).
            fn drop(&mut self) {
                if !self.reset_on_drop {
                    return;
                }

                if let Some(prev_mode) = self.prev_mode {
                    self.pin.set_mode(prev_mode);
                }

                if self.bias != Bias::Off {
                    self.pin.set_bias(Bias::Off);
                }
            }
        }
    };
}

macro_rules! impl_eq {
    ($struct:ident) => {
        impl PartialEq for $struct {
            fn eq(&self, other: &$struct) -> bool {
                self.pin == other.pin
            }
        }

        impl<'a> PartialEq<&'a $struct> for $struct {
            fn eq(&self, other: &&'a $struct) -> bool {
                self.pin == other.pin
            }
        }

        impl<'a> PartialEq<$struct> for &'a $struct {
            fn eq(&self, other: &$struct) -> bool {
                self.pin == other.pin
            }
        }

        impl Eq for $struct {}
    };
}

/// Unconfigured GPIO pin.
///
/// `Pin`s are constructed by retrieving them using [`Gpio::get`].
///
/// An unconfigured `Pin` can be used to read the pin's mode and logic level.
/// Converting the `Pin` to an [`InputPin`], [`OutputPin`] or [`IoPin`] through the
/// various `into_` methods available on `Pin` configures the appropriate mode, and
/// provides access to additional methods relevant to the selected pin mode.
///
/// The `unproven` `embedded-hal` [`digital::InputPin`] trait implementation for `Pin` can be enabled
/// by specifying the optional `hal-unproven` feature in the dependency declaration for
/// the `rppal` crate.
///
/// [`digital::InputPin`]: ../../embedded_hal/digital/trait.InputPin.html
/// [`Gpio::get`]: struct.Gpio.html#method.get
/// [`InputPin`]: struct.InputPin.html
/// [`OutputPin`]: struct.OutputPin.html
/// [`IoPin`]: struct.IoPin.html
#[derive(Debug)]
pub struct Pin {
    pub(crate) pin: u8,
    gpio_state: Arc<GpioState>,
}

impl Pin {
    #[inline]
    pub(crate) fn new(pin: u8, gpio_state: Arc<GpioState>) -> Pin {
        Pin { pin, gpio_state }
    }

    /// Returns the GPIO pin number.
    ///
    /// Pins are addressed by their BCM GPIO numbers, rather than their physical location.
    #[inline]
    pub fn pin(&self) -> u8 {
        self.pin
    }

    /// Returns the pin's mode.
    #[inline]
    pub fn mode(&self) -> Mode {
        self.gpio_state.gpio_mem.mode(self.pin)
    }

    /// Reads the pin's logic level.
    #[inline]
    pub fn read(&self) -> Level {
        self.gpio_state.gpio_mem.level(self.pin)
    }

    /// Consumes the `Pin` and returns an [`InputPin`]. Sets the mode to [`Input`]
    /// and disables the pin's built-in pull-up/pull-down resistors.
    ///
    /// [`InputPin`]: struct.InputPin.html
    /// [`Input`]: enum.Mode.html#variant.Input
    #[inline]
    pub fn into_input(self) -> InputPin {
        InputPin::new(self, Bias::Off)
    }

    /// Consumes the `Pin` and returns an [`InputPin`]. Sets the mode to [`Input`]
    /// and enables the pin's built-in pull-down resistor.
    ///
    /// The pull-down resistor is disabled when `InputPin` goes out of scope if [`reset_on_drop`]
    /// is set to `true` (default).
    ///
    /// [`InputPin`]: struct.InputPin.html
    /// [`Input`]: enum.Mode.html#variant.Input
    /// [`reset_on_drop`]: struct.InputPin.html#method.set_reset_on_drop
    #[inline]
    pub fn into_input_pulldown(self) -> InputPin {
        InputPin::new(self, Bias::PullDown)
    }

    /// Consumes the `Pin` and returns an [`InputPin`]. Sets the mode to [`Input`]
    /// and enables the pin's built-in pull-up resistor.
    ///
    /// The pull-up resistor is disabled when `InputPin` goes out of scope if [`reset_on_drop`]
    /// is set to `true` (default).
    ///
    /// [`InputPin`]: struct.InputPin.html
    /// [`Input`]: enum.Mode.html#variant.Input
    /// [`reset_on_drop`]: struct.InputPin.html#method.set_reset_on_drop
    #[inline]
    pub fn into_input_pullup(self) -> InputPin {
        InputPin::new(self, Bias::PullUp)
    }

    /// Consumes the `Pin` and returns an [`OutputPin`]. Sets the mode to [`Mode::Output`]
    /// and leaves the logic level unchanged.
    #[inline]
    pub fn into_output(self) -> OutputPin {
        OutputPin::new(self)
    }

    /// Consumes the `Pin` and returns an [`OutputPin`]. Changes the logic level to
    /// [`Level::Low`] and then sets the mode to [`Mode::Output`].
    #[inline]
    pub fn into_output_low(mut self) -> OutputPin {
        self.set_low();

        OutputPin::new(self)
    }

    /// Consumes the `Pin` and returns an [`OutputPin`]. Changes the logic level to
    /// [`Level::High`] and then sets the mode to [`Mode::Output`].
    #[inline]
    pub fn into_output_high(mut self) -> OutputPin {
        self.set_high();

        OutputPin::new(self)
    }

    /// Consumes the `Pin` and returns an [`IoPin`]. Sets the mode to the specified mode.
    ///
    /// [`IoPin`]: struct.IoPin.html
    /// [`Mode`]: enum.Mode.html
    #[inline]
    pub fn into_io(self, mode: Mode) -> IoPin {
        IoPin::new(self, mode)
    }

    #[inline]
    pub(crate) fn set_mode(&mut self, mode: Mode) {
        self.gpio_state.gpio_mem.set_mode(self.pin, mode);
    }

    #[inline]
    pub(crate) fn set_bias(&mut self, bias: Bias) {
        self.gpio_state.gpio_mem.set_bias(self.pin, bias);
    }

    #[inline]
    pub(crate) fn set_low(&mut self) {
        self.gpio_state.gpio_mem.set_low(self.pin);
    }

    #[inline]
    pub(crate) fn set_high(&mut self) {
        self.gpio_state.gpio_mem.set_high(self.pin);
    }

    #[inline]
    pub(crate) fn write(&mut self, level: Level) {
        match level {
            Level::Low => self.set_low(),
            Level::High => self.set_high(),
        };
    }
}

impl Drop for Pin {
    fn drop(&mut self) {
        // Release taken pin
        self.gpio_state.pins_taken[self.pin as usize].store(false, Ordering::SeqCst);
    }
}

impl_eq!(Pin);

/// GPIO pin configured as input.
///
/// `InputPin`s are constructed by converting a [`Pin`] using [`Pin::into_input`],
/// [`Pin::into_input_pullup`] or [`Pin::into_input_pulldown`]. The pin's mode is
/// automatically set to [`Input`].
///
/// An `InputPin` can be used to read a pin's logic level, or (a)synchronously poll for
/// interrupt trigger events.
///
/// The `unproven` `embedded-hal` [`digital::InputPin`] trait implementation for `InputPin` can be enabled
/// by specifying the optional `hal-unproven` feature in the dependency declaration for
/// the `rppal` crate.
///
/// [`digital::InputPin`]: ../../embedded_hal/digital/trait.InputPin.html
/// [`Pin`]: struct.Pin.html
/// [`Input`]: enum.Mode.html#variant.Input
/// [`Pin::into_input`]: struct.Pin.html#method.into_input
/// [`Pin::into_input_pullup`]: struct.Pin.html#method.into_input_pullup
/// [`Pin::into_input_pulldown`]: struct.Pin.html#method.into_input_pulldown
#[derive(Debug)]
pub struct InputPin {
    pub(crate) pin: Pin,
    prev_mode: Option<Mode>,
    async_interrupt: Option<AsyncInterrupt>,
    reset_on_drop: bool,
    bias: Bias,
}

impl InputPin {
    pub(crate) fn new(mut pin: Pin, bias: Bias) -> InputPin {
        let prev_mode = pin.mode();

        let prev_mode = if prev_mode == Mode::Input {
            None
        } else {
            pin.set_mode(Mode::Input);
            Some(prev_mode)
        };

        pin.set_bias(bias);

        InputPin {
            pin,
            prev_mode,
            async_interrupt: None,
            reset_on_drop: true,
            bias,
        }
    }

    impl_pin!();
    impl_input!();

    /// Configures a synchronous interrupt trigger.
    ///
    /// After configuring a synchronous interrupt trigger, call [`poll_interrupt`] or
    /// [`Gpio::poll_interrupts`] to block while waiting for a trigger event.
    ///
    /// Any previously configured (a)synchronous interrupt triggers will be cleared.
    ///
    /// [`poll_interrupt`]: #method.poll_interrupt
    /// [`Gpio::poll_interrupts`]: struct.Gpio.html#method.poll_interrupts
    pub fn set_interrupt(&mut self, trigger: Trigger) -> Result<()> {
        self.clear_async_interrupt()?;

        // Each pin can only be configured for a single trigger type
        (*self.pin.gpio_state.sync_interrupts.lock().unwrap()).set_interrupt(self.pin(), trigger)
    }

    /// Removes a previously configured synchronous interrupt trigger.
    pub fn clear_interrupt(&mut self) -> Result<()> {
        (*self.pin.gpio_state.sync_interrupts.lock().unwrap()).clear_interrupt(self.pin())
    }

    /// Blocks until an interrupt is triggered on the pin, or a timeout occurs.
    ///
    /// This only works after the pin has been configured for synchronous interrupts using
    /// [`set_interrupt`]. Asynchronous interrupt triggers are automatically polled on a separate thread.
    ///
    /// Calling `poll_interrupt` blocks any other calls to `poll_interrupt` (including on other `InputPin`s) or
    /// [`Gpio::poll_interrupts`] until it returns. If you need to poll multiple pins simultaneously, use
    /// [`Gpio::poll_interrupts`] to block while waiting for any of the interrupts to trigger, or switch to
    /// using asynchronous interrupts with [`set_async_interrupt`].
    ///
    /// Setting `reset` to `false` returns any cached interrupt trigger events if available. Setting `reset` to `true`
    /// clears all cached events before polling for new events.
    ///
    /// The `timeout` duration indicates how long the call will block while waiting
    /// for interrupt trigger events, after which an `Ok(None))` is returned.
    /// `timeout` can be set to `None` to wait indefinitely.
    ///
    /// [`set_interrupt`]: #method.set_interrupt
    /// [`Gpio::poll_interrupts`]: struct.Gpio.html#method.poll_interrupts
    /// [`set_async_interrupt`]: #method.set_async_interrupt
    pub fn poll_interrupt(
        &mut self,
        reset: bool,
        timeout: Option<Duration>,
    ) -> Result<Option<Level>> {
        let opt =
            (*self.pin.gpio_state.sync_interrupts.lock().unwrap()).poll(&[self], reset, timeout)?;

        if let Some(trigger) = opt {
            Ok(Some(trigger.1))
        } else {
            Ok(None)
        }
    }

    /// Configures an asynchronous interrupt trigger, which executes the callback on a
    /// separate thread when the interrupt is triggered.
    ///
    /// The callback closure or function pointer is called with a single [`Level`] argument.
    ///
    /// Any previously configured (a)synchronous interrupt triggers for this pin are cleared
    /// when `set_async_interrupt` is called, or when `InputPin` goes out of scope.
    ///
    /// [`clear_async_interrupt`]: #method.clear_async_interrupt
    /// [`Level`]: enum.Level.html
    pub fn set_async_interrupt<C>(&mut self, trigger: Trigger, callback: C) -> Result<()>
    where
        C: FnMut(Level) + Send + 'static,
    {
        self.clear_interrupt()?;
        self.clear_async_interrupt()?;

        self.async_interrupt = Some(AsyncInterrupt::new(
            self.pin.gpio_state.cdev.as_raw_fd(),
            self.pin(),
            trigger,
            callback,
        )?);

        Ok(())
    }

    /// Removes a previously configured asynchronous interrupt trigger.
    pub fn clear_async_interrupt(&mut self) -> Result<()> {
        if let Some(mut interrupt) = self.async_interrupt.take() {
            interrupt.stop()?;
        }

        Ok(())
    }

    impl_reset_on_drop!();
}

impl_drop!(InputPin);
impl_eq!(InputPin);

/// GPIO pin configured as output.
///
/// `OutputPin`s are constructed by converting a [`Pin`] using [`Pin::into_output`],
/// [`Pin::into_output_low`] or [`Pin::into_output_high`]. The pin's mode is automatically set to
/// [`Mode::Output`].
///
/// An `OutputPin` can be used to change a pin's output state.
///
/// The `embedded-hal` [`digital::OutputPin`] and [`PwmPin`] trait implementations for `OutputPin`
/// can be enabled by specifying the optional `hal` feature in the dependency
/// declaration for the `rppal` crate.
///
/// The `unproven` `embedded-hal` [`digital::InputPin`], [`digital::StatefulOutputPin`],
/// [`digital::ToggleableOutputPin`] and [`Pwm`] trait implementations for `OutputPin` can be enabled
/// by specifying the optional `hal-unproven` feature in the dependency declaration for
/// the `rppal` crate.
///
/// [`digital::InputPin`]: ../../embedded_hal/digital/trait.InputPin.html
/// [`digital::StatefulOutputPin`]: ../../embedded_hal/digital/trait.StatefulOutputPin.html
/// [`digital::ToggleableOutputPin`]: ../../embedded_hal/digital/trait.ToggleableOutputPin.html
/// [`Pwm`]: ../../embedded_hal/trait.Pwm.html
/// [`digital::OutputPin`]: ../../embedded_hal/digital/trait.OutputPin.html
/// [`PwmPin`]: ../../embedded_hal/trait.PwmPin.html
#[derive(Debug)]
pub struct OutputPin {
    pin: Pin,
    prev_mode: Option<Mode>,
    reset_on_drop: bool,
    bias: Bias,
    pub(crate) soft_pwm: Option<SoftPwm>,
    // Stores the softpwm frequency. Used for embedded_hal::PwmPin.
    #[cfg(feature = "hal")]
    pub(crate) frequency: f64,
    // Stores the softpwm duty cycle. Used for embedded_hal::PwmPin.
    #[cfg(feature = "hal")]
    pub(crate) duty_cycle: f64,
}

impl OutputPin {
    pub(crate) fn new(mut pin: Pin) -> OutputPin {
        let prev_mode = pin.mode();

        let prev_mode = if prev_mode == Mode::Output {
            None
        } else {
            pin.set_mode(Mode::Output);
            Some(prev_mode)
        };

        OutputPin {
            pin,
            prev_mode,
            reset_on_drop: true,
            bias: Bias::Off,
            soft_pwm: None,
            #[cfg(feature = "hal")]
            frequency: 0.0,
            #[cfg(feature = "hal")]
            duty_cycle: 0.0,
        }
    }

    impl_pin!();

    /// Returns `true` if the pin's output state is set to [`Low`].
    ///
    /// [`Low`]: enum.Level.html#variant.Low
    #[inline]
    pub fn is_set_low(&self) -> bool {
        self.pin.read() == Level::Low
    }

    /// Returns `true` if the pin's output state is set to [`High`].
    ///
    /// [`High`]: enum.Level.html#variant.High
    #[inline]
    pub fn is_set_high(&self) -> bool {
        self.pin.read() == Level::High
    }

    impl_output!();
    impl_reset_on_drop!();
}

impl_drop!(OutputPin);
impl_eq!(OutputPin);

/// GPIO pin that can be (re)configured for any mode or alternate function.
///
/// `IoPin`s are constructed by converting a [`Pin`] using [`Pin::into_io`].
/// The pin's mode is automatically set to the specified mode.
///
/// An `IoPin` can be reconfigured for any available mode. Depending on the
/// mode, some methods may not have any effect. For instance, calling a method that
/// alters the pin's output state won't cause any changes when the pin's mode is set
/// to [`Input`].
///
/// The `embedded-hal` [`digital::OutputPin`] and [`PwmPin`] trait implementations for `IoPin`
/// can be enabled by specifying the optional `hal` feature in the dependency
/// declaration for the `rppal` crate.
///
/// The `unproven` `embedded-hal` [`digital::InputPin`], [`digital::StatefulOutputPin`],
/// [`digital::ToggleableOutputPin`] and [`Pwm`] trait implementations for `IoPin` can be enabled
/// by specifying the optional `hal-unproven` feature in the dependency declaration for
/// the `rppal` crate.
///
/// [`digital::InputPin`]: ../../embedded_hal/digital/trait.InputPin.html
/// [`digital::StatefulOutputPin`]: ../../embedded_hal/digital/trait.StatefulOutputPin.html
/// [`digital::ToggleableOutputPin`]: ../../embedded_hal/digital/trait.ToggleableOutputPin.html
/// [`Pwm`]: ../../embedded_hal/trait.Pwm.html
/// [`Pin`]: struct.Pin.html
/// [`Input`]: enum.Mode.html#variant.Input
/// [`Pin::into_io`]: struct.Pin.html#method.into_io
/// [`digital::OutputPin`]: ../../embedded_hal/digital/trait.OutputPin.html
/// [`PwmPin`]: ../../embedded_hal/trait.PwmPin.html
#[derive(Debug)]
pub struct IoPin {
    pin: Pin,
    mode: Mode,
    prev_mode: Option<Mode>,
    reset_on_drop: bool,
    bias: Bias,
    pub(crate) soft_pwm: Option<SoftPwm>,
    // Stores the softpwm frequency. Used for embedded_hal::PwmPin.
    #[cfg(feature = "hal")]
    pub(crate) frequency: f64,
    // Stores the softpwm duty cycle. Used for embedded_hal::PwmPin.
    #[cfg(feature = "hal")]
    pub(crate) duty_cycle: f64,
}

impl IoPin {
    pub(crate) fn new(mut pin: Pin, mode: Mode) -> IoPin {
        let prev_mode = pin.mode();

        let prev_mode = if prev_mode == mode {
            None
        } else {
            pin.set_mode(mode);
            Some(prev_mode)
        };

        IoPin {
            pin,
            mode,
            prev_mode,
            reset_on_drop: true,
            bias: Bias::Off,
            soft_pwm: None,
            #[cfg(feature = "hal")]
            frequency: 0.0,
            #[cfg(feature = "hal")]
            duty_cycle: 0.0,
        }
    }

    impl_pin!();

    /// Returns the pin's mode.
    #[inline]
    pub fn mode(&self) -> Mode {
        self.pin.mode()
    }

    /// Sets the pin's mode.
    #[inline]
    pub fn set_mode(&mut self, mode: Mode) {
        // If self.prev_mode is set to None, that means the
        // requested mode during construction was the same as
        // the current mode. Save that mode if we're changing
        // it to something else now, so we can reset it on drop.
        if self.prev_mode.is_none() && mode != self.mode {
            self.prev_mode = Some(self.mode);
        }

        self.pin.set_mode(mode);
    }

    /// Configures the built-in pull-up/pull-down resistors.
    #[inline]
    pub fn set_bias(&mut self, bias: Bias) {
        self.pin.set_bias(bias);
        self.bias = bias;
    }

    impl_input!();
    impl_output!();
    impl_reset_on_drop!();
}

impl_drop!(IoPin);
impl_eq!(IoPin);