1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
//! Interface for the PWM peripheral.
//!
//! RPPAL controls the Raspberry Pi's PWM peripheral through the `pwm` sysfs
//! interface.
//!
//! ## PWM channels
//!
//! The BCM283x SoC supports two hardware PWM channels. By default, both channels
//! are disabled. To enable only PWM0 on its default pin (BCM GPIO 18, physical pin 12),
//! add `dtoverlay=pwm` to `/boot/config.txt` on Raspberry Pi OS or `boot/firmware/usercfg.txt` on
//! Ubuntu. If you need both PWM channels, replace `pwm` with `pwm-2chan`, which enables PWM0 on BCM
//! GPIO 18 (physical pin 12), and PWM1 on BCM GPIO 19 (physical pin 35). More details on enabling
//! and configuring PWM on other GPIO pins than the default ones can be found in
//! `/boot/overlays/README`.
//!
//! The Raspberry Pi's analog audio output uses both PWM channels. Playing audio and
//! simultaneously accessing a PWM channel may cause issues.
//!
//! Some of the GPIO pins capable of supporting hardware PWM can also be configured for
//! use with other peripherals. Be careful not to enable two peripherals on the same pin
//! at the same time.
//!
//! ## Using PWM without superuser privileges (`sudo`)
//!
//! As of kernel version 4.14.34, released on April 16 2018, it's possible to
//! configure your Raspberry Pi to allow non-root access to PWM. 4.14.34 includes
//! a [patch] that allows `udev` to change file permissions when a
//! PWM channel is exported. This will let any user that's a member of the `gpio`
//! group configure PWM without having to use `sudo`.
//!
//! The `udev` rules needed to make this work haven't been patched in yet as of
//! June 2018, but you can easily add them yourself. Make sure you're running
//! 4.14.34 or later, and append the following snippet to
//! `/etc/udev/rules.d/99-com.rules`. Reboot the Raspberry Pi afterwards.
//!
//! ```text
//! SUBSYSTEM=="pwm*", PROGRAM="/bin/sh -c '\
//!     chown -R root:gpio /sys/class/pwm && chmod -R 770 /sys/class/pwm;\
//!     chown -R root:gpio /sys/devices/platform/soc/*.pwm/pwm/pwmchip* &&\
//!     chmod -R 770 /sys/devices/platform/soc/*.pwm/pwm/pwmchip*\
//! '"
//! ```
//!
//! ## Troubleshooting
//!
//! ### Permission denied
//!
//! If [`new`] returns an `io::ErrorKind::PermissionDenied`
//! error, make sure `/sys/class/pwm` and all of its subdirectories
//! are owned by `root:gpio`, the current user is a member of the `gpio` group
//! and `udev` is properly configured as mentioned above. Alternatively, you can
//! launch your application using `sudo`.
//!
//! ### Not found
//!
//! If [`new`] returns an `io::ErrorKind::NotFound` error, you may have
//! forgotten to enable the selected PWM channel. The configuration options
//! to enable either of the two PWM channels are listed above.
//!
//! [patch]: https://github.com/raspberrypi/linux/issues/1983
//! [`new`]: struct.Pwm.html#method.new

use std::error;
use std::fmt;
use std::io;
use std::result;
use std::time::Duration;

#[cfg(feature = "hal")]
mod hal;
#[cfg(feature = "hal-unproven")]
mod hal_unproven;
mod sysfs;

const NANOS_PER_SEC: f64 = 1_000_000_000.0;

/// Errors that can occur when accessing the PWM peripheral.
#[derive(Debug)]
pub enum Error {
    /// I/O error.
    Io(io::Error),
}

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            Error::Io(ref err) => write!(f, "I/O error: {}", err),
        }
    }
}

impl error::Error for Error {}

impl From<io::Error> for Error {
    fn from(err: io::Error) -> Error {
        Error::Io(err)
    }
}

/// Result type returned from methods that can have `pwm::Error`s.
pub type Result<T> = result::Result<T, Error>;

/// PWM channels.
///
/// More information on enabling and configuring the PWM channels can be
/// found [here].
///
/// [here]: index.html
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum Channel {
    Pwm0 = 0,
    Pwm1 = 1,
}

impl fmt::Display for Channel {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            Channel::Pwm0 => write!(f, "Pwm0"),
            Channel::Pwm1 => write!(f, "Pwm1"),
        }
    }
}

/// Output polarities.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum Polarity {
    Normal,
    Inverse,
}

impl fmt::Display for Polarity {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            Polarity::Normal => write!(f, "Normal"),
            Polarity::Inverse => write!(f, "Inverse"),
        }
    }
}

/// Provides access to the Raspberry Pi's PWM peripheral.
///
/// Before using `Pwm`, make sure the selected PWM channel has been configured
/// and activated. More information can be found [here].
///
/// The `embedded-hal` [`PwmPin`] trait implementation for `Pwm` can be enabled
/// by specifying the optional `hal` feature in the dependency declaration for
/// the `rppal` crate.
///
/// The `unproven` `embedded-hal` [`Pwm`] trait implementation for `Pwm` can be enabled
/// by specifying the optional `hal-unproven` feature in the dependency declaration for
/// the `rppal` crate.
///
/// [here]: index.html
/// [`PwmPin`]: ../../embedded_hal/trait.PwmPin.html
/// [`Pwm`]: ../../embedded_hal/trait.Pwm.html
#[derive(Debug)]
pub struct Pwm {
    channel: Channel,
    reset_on_drop: bool,
}

impl Pwm {
    /// Constructs a new `Pwm`.
    ///
    /// `new` doesn't change the channel's period, pulse width or polarity. The channel
    /// will remain disabled until [`enable`] is called.
    ///
    /// [`enable`]: #method.enable
    pub fn new(channel: Channel) -> Result<Pwm> {
        sysfs::export(channel as u8)?;

        let pwm = Pwm {
            channel,
            reset_on_drop: true,
        };

        // Always reset "enable" to 0. The sysfs interface has a bug where a previous
        // export may have left "enable" as 1 after unexporting. On the next export,
        // "enable" is still set to 1, even though the channel isn't enabled.
        let _ = pwm.disable();

        Ok(pwm)
    }

    /// Constructs a new `Pwm` using the specified settings.
    ///
    /// `period` indicates the time it takes for the PWM channel to complete one cycle.
    ///
    /// `pulse_width` indicates the amount of time the PWM channel is active during a
    /// single period.
    ///
    /// `polarity` configures the active logic level as either high ([`Normal`])
    /// or low ([`Inverse`]).
    ///
    /// `enabled` enables PWM on the selected channel. If `enabled` is set to `false`,
    /// the channel will remain disabled until [`enable`] is called.
    ///
    /// This method will fail if `period` is shorter than `pulse_width`.
    ///
    /// [`Normal`]: enum.Polarity.html#variant.Normal
    /// [`Inverse`]: enum.Polarity.html#variant.Inverse
    /// [`enable`]: #method.enable
    pub fn with_period(
        channel: Channel,
        period: Duration,
        pulse_width: Duration,
        polarity: Polarity,
        enabled: bool,
    ) -> Result<Pwm> {
        sysfs::export(channel as u8)?;

        let pwm = Pwm {
            channel,
            reset_on_drop: true,
        };

        // Always reset "enable" to 0. The sysfs pwm interface has a bug where a previous
        // export may have left "enable" as 1 after unexporting. On the next export,
        // "enable" is still set to 1, even though the channel isn't enabled.
        let _ = pwm.disable();

        // Set pulse width to 0 first in case the new period is shorter than the current pulse width
        let _ = sysfs::set_pulse_width(channel as u8, 0);

        pwm.set_period(period)?;
        pwm.set_pulse_width(pulse_width)?;
        pwm.set_polarity(polarity)?;
        if enabled {
            pwm.enable()?;
        }

        Ok(pwm)
    }

    /// Constructs a new `Pwm` using the specified settings.
    ///
    /// `with_frequency` is a convenience method that converts `frequency` to a period,
    /// and calculates the duty cycle as a percentage of the frequency.
    ///
    /// `frequency` is specified in hertz (Hz).
    ///
    /// `duty_cycle` is specified as a floating point value between `0.0` (0%) and `1.0` (100%).
    ///
    /// `polarity` configures the active logic level as either high ([`Normal`])
    /// or low ([`Inverse`]).
    ///
    /// `enabled` enables PWM on the selected channel. If `enabled` is set to `false`,
    /// the channel will remain disabled until [`enable`] is called.
    ///
    /// [`Normal`]: enum.Polarity.html#variant.Normal
    /// [`Inverse`]: enum.Polarity.html#variant.Inverse
    /// [`enable`]: #method.enable
    pub fn with_frequency(
        channel: Channel,
        frequency: f64,
        duty_cycle: f64,
        polarity: Polarity,
        enabled: bool,
    ) -> Result<Pwm> {
        sysfs::export(channel as u8)?;

        let pwm = Pwm {
            channel,
            reset_on_drop: true,
        };

        // Always reset "enable" to 0. The sysfs pwm interface has a bug where a previous
        // export may have left "enable" as 1 after unexporting. On the next export,
        // "enable" is still set to 1, even though the channel isn't enabled.
        let _ = pwm.disable();

        // Set pulse width to 0 first in case the new period is shorter than the current pulse width
        let _ = sysfs::set_pulse_width(channel as u8, 0);

        // Convert to nanoseconds
        let period = if frequency == 0.0 {
            0.0
        } else {
            (1.0 / frequency) * NANOS_PER_SEC
        };
        let pulse_width = period * duty_cycle.clamp(0.0, 1.0);

        sysfs::set_period(channel as u8, period as u64)?;
        sysfs::set_pulse_width(channel as u8, pulse_width as u64)?;
        pwm.set_polarity(polarity)?;
        if enabled {
            pwm.enable()?;
        }

        Ok(pwm)
    }

    /// Returns the period.
    pub fn period(&self) -> Result<Duration> {
        Ok(Duration::from_nanos(sysfs::period(self.channel as u8)?))
    }

    /// Sets the period.
    ///
    /// `period` indicates the time it takes for the PWM channel to complete one cycle.
    ///
    /// This method will fail if `period` is shorter than the current pulse width.
    pub fn set_period(&self, period: Duration) -> Result<()> {
        sysfs::set_period(
            self.channel as u8,
            u64::from(period.subsec_nanos())
                .saturating_add(period.as_secs().saturating_mul(NANOS_PER_SEC as u64)),
        )?;

        Ok(())
    }

    /// Returns the pulse width.
    pub fn pulse_width(&self) -> Result<Duration> {
        Ok(Duration::from_nanos(sysfs::pulse_width(
            self.channel as u8,
        )?))
    }

    /// Sets the pulse width.
    ///
    /// `pulse_width` indicates the amount of time the PWM channel is active during a
    /// single period.
    ///
    /// This method will fail if `pulse_width` is longer than the current period.
    pub fn set_pulse_width(&self, pulse_width: Duration) -> Result<()> {
        sysfs::set_pulse_width(
            self.channel as u8,
            u64::from(pulse_width.subsec_nanos())
                .saturating_add(pulse_width.as_secs().saturating_mul(NANOS_PER_SEC as u64)),
        )?;

        Ok(())
    }

    /// Returns the frequency.
    ///
    /// `frequency` is a convenience method that calculates the frequency in hertz (Hz)
    /// based on the configured period.
    pub fn frequency(&self) -> Result<f64> {
        let period = sysfs::period(self.channel as u8)? as f64;

        Ok(if period == 0.0 {
            0.0
        } else {
            1.0 / (period / NANOS_PER_SEC)
        })
    }

    /// Sets the frequency and duty cycle.
    ///
    /// `set_frequency` is a convenience method that converts `frequency` to a period,
    /// and calculates the duty cycle as a percentage of the frequency.
    ///
    /// `frequency` is specified in hertz (Hz).
    ///
    /// `duty_cycle` is specified as a floating point value between `0.0` (0%) and `1.0` (100%).
    pub fn set_frequency(&self, frequency: f64, duty_cycle: f64) -> Result<()> {
        // Set duty cycle to 0 first in case the new period is shorter than the current duty cycle
        let _ = sysfs::set_pulse_width(self.channel as u8, 0);

        // Convert to nanoseconds
        let period = if frequency == 0.0 {
            0.0
        } else {
            (1.0 / frequency) * NANOS_PER_SEC
        };
        let pulse_width = period * duty_cycle.clamp(0.0, 1.0);

        sysfs::set_period(self.channel as u8, period as u64)?;
        sysfs::set_pulse_width(self.channel as u8, pulse_width as u64)?;

        Ok(())
    }

    /// Returns the duty cycle.
    ///
    /// `duty_cycle` is a convenience method that calculates the duty cycle as a
    /// floating point value between `0.0` (0%) and `1.0` (100%) based on the configured
    /// period and pulse width.
    pub fn duty_cycle(&self) -> Result<f64> {
        let period = sysfs::period(self.channel as u8)? as f64;
        let pulse_width = sysfs::pulse_width(self.channel as u8)? as f64;

        Ok(if period == 0.0 {
            0.0
        } else {
            (pulse_width / period).clamp(0.0, 1.0)
        })
    }

    /// Sets the duty cycle.
    ///
    /// `set_duty_cycle` is a convenience method that converts `duty_cycle` to a
    /// pulse width based on the configured period.
    ///
    /// `duty_cycle` is specified as a floating point value between `0.0` (0%) and `1.0` (100%).
    pub fn set_duty_cycle(&self, duty_cycle: f64) -> Result<()> {
        let period = sysfs::period(self.channel as u8)? as f64;
        let pulse_width = period * duty_cycle.clamp(0.0, 1.0);

        sysfs::set_pulse_width(self.channel as u8, pulse_width as u64)?;

        Ok(())
    }

    /// Returns the polarity.
    pub fn polarity(&self) -> Result<Polarity> {
        Ok(sysfs::polarity(self.channel as u8)?)
    }

    /// Sets the polarity.
    ///
    /// `polarity` configures the active logic level as either high
    /// ([`Normal`]) or low ([`Inverse`]).
    ///
    /// [`Normal`]: enum.Polarity.html#variant.Normal
    /// [`Inverse`]: enum.Polarity.html#variant.Inverse
    pub fn set_polarity(&self, polarity: Polarity) -> Result<()> {
        sysfs::set_polarity(self.channel as u8, polarity)?;

        Ok(())
    }

    /// Returns `true` if the PWM channel is enabled.
    pub fn is_enabled(&self) -> Result<bool> {
        Ok(sysfs::enabled(self.channel as u8)?)
    }

    /// Enables the PWM channel.
    pub fn enable(&self) -> Result<()> {
        sysfs::set_enabled(self.channel as u8, true)?;

        Ok(())
    }

    /// Disables the PWM channel.
    pub fn disable(&self) -> Result<()> {
        sysfs::set_enabled(self.channel as u8, false)?;

        Ok(())
    }

    /// Returns the value of `reset_on_drop`.
    pub fn reset_on_drop(&self) -> bool {
        self.reset_on_drop
    }

    /// When enabled, disables the PWM channel when the `Pwm` instance
    /// goes out of scope. By default, this is set to `true`.
    ///
    /// ## Note
    ///
    /// Drop methods aren't called when a process is abnormally terminated, for
    /// instance when a user presses <kbd>Ctrl</kbd> + <kbd>C</kbd>, and the `SIGINT` signal
    /// isn't caught. You can catch those using crates such as [`simple_signal`].
    ///
    /// [`simple_signal`]: https://crates.io/crates/simple-signal
    pub fn set_reset_on_drop(&mut self, reset_on_drop: bool) {
        self.reset_on_drop = reset_on_drop;
    }
}

impl Drop for Pwm {
    fn drop(&mut self) {
        if self.reset_on_drop {
            let _ = sysfs::set_enabled(self.channel as u8, false);
            let _ = sysfs::unexport(self.channel as u8);
        }
    }
}