1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
//! Interface for the main and auxiliary SPI peripherals.
//!
//! RPPAL provides access to the available SPI buses by using the `spidev` device
//! interface through `/dev/spidevB.S`, where B refers to an SPI bus, and S to
//! a Slave Select pin. Which buses and pins are available depends on your
//! Raspberry Pi model and configuration, as explained below.
//!
//! ## SPI buses
//!
//! The Raspberry Pi's GPIO header exposes several SPI buses. SPI0 is available
//! on all Raspberry Pi models. SPI1 is available on models with a 40-pin
//! header. SPI2 is only available on the Compute and Compute 3. SPI3 through SPI6
//! are only available on the Raspberry Pi 4 B, 400 and 5.
//!
//! ### SPI0
//!
//! SPI0 is disabled by default. You can enable it by running
//! `sudo raspi-config`, or by manually adding `dtparam=spi=on` to
//! `/boot/config.txt`. The associated pins are listed below.
//!
//! * MISO: BCM GPIO 9 (physical pin 21)
//! * MOSI: BCM GPIO 10 (physical pin 19)
//! * SCLK: BCM GPIO 11 (physical pin 23)
//! * SS: [`Ss0`] BCM GPIO 8 (physical pin 24), [`Ss1`] BCM GPIO 7 (physical pin 26)
//!
//! ### SPI1
//!
//! SPI1 is an auxiliary peripheral that's referred to as mini SPI. According
//! to the BCM2835 documentation, using higher clock speeds on SPI1 requires
//! additional CPU time compared to SPI0, caused by smaller FIFOs and no DMA
//! support. It doesn't support [`Mode1`] or [`Mode3`]. SPI1 can be enabled by
//! adding `dtoverlay=spi1-1cs` to `/boot/config.txt`. Replace `1cs` with
//! either `2cs` or `3cs` if you require 2 or 3 Slave Select pins.
//! The associated pins are listed below.
//!
//! * MISO: BCM GPIO 19 (physical pin 35)
//! * MOSI: BCM GPIO 20 (physical pin 38)
//! * SCLK: BCM GPIO 21 (physical pin 40)
//! * SS: [`Ss0`] BCM GPIO 18 (physical pin 12), [`Ss1`] BCM GPIO 17 (physical pin 11), [`Ss2`] BCM GPIO 16 (physical pin 36)
//!
//! ### SPI2
//!
//! SPI2 shares the same characteristics and limitations as SPI1. It can be
//! enabled by adding `dtoverlay=spi2-1cs` to `/boot/config.txt`. Replace
//! `1cs` with either `2cs` or `3cs` if you require 2 or 3 Slave Select
//! pins. The associated pins are listed below.
//!
//! * MISO: BCM GPIO 40
//! * MOSI: BCM GPIO 41
//! * SCLK: BCM GPIO 42
//! * SS: [`Ss0`] BCM GPIO 43, [`Ss1`] BCM GPIO 44, [`Ss2`] BCM GPIO 45
//!
//! ### SPI3
//!
//! SPI3 can be enabled by adding `dtoverlay=spi3-1cs` to `/boot/config.txt`. Replace
//! `1cs` with `2cs` if you require 2 Slave Select pins. The associated pins are listed below.
//!
//! * MISO: BCM GPIO 1 (physical pin 28)
//! * MOSI: BCM GPIO 2 (physical pin 3)
//! * SCLK: BCM GPIO 3 (physical pin 5)
//! * SS: [`Ss0`] BCM GPIO 0 (physical pin 27), [`Ss1`] BCM GPIO 24 (physical pin 18)
//!
//! ### SPI4
//!
//! SPI4 can be enabled by adding `dtoverlay=spi4-1cs` to `/boot/config.txt`. Replace
//! `1cs` with `2cs` if you require 2 Slave Select pins. The associated pins are listed below.
//!
//! * MISO: BCM GPIO 5 (physical pin 29)
//! * MOSI: BCM GPIO 6 (physical pin 31)
//! * SCLK: BCM GPIO 7 (physical pin 26)
//! * SS: [`Ss0`] BCM GPIO 4 (physical pin 7), [`Ss1`] BCM GPIO 25 (physical pin 22)
//!
//! ### SPI5
//!
//! SPI5 can be enabled by adding `dtoverlay=spi5-1cs` to `/boot/config.txt`. Replace
//! `1cs` with `2cs` if you require 2 Slave Select pins. The associated pins are listed below.
//!
//! * MISO: BCM GPIO 13 (physical pin 33)
//! * MOSI: BCM GPIO 14 (physical pin 8)
//! * SCLK: BCM GPIO 15 (physical pin 10)
//! * SS: [`Ss0`] BCM GPIO 12 (physical pin 32), [`Ss1`] BCM GPIO 26 (physical pin 37)
//!
//! ### SPI6
//!
//! SPI6 can be enabled by adding `dtoverlay=spi6-1cs` to `/boot/config.txt`. Replace
//! `1cs` with `2cs` if you require 2 Slave Select pins. The associated pins are listed below.
//!
//! * MISO: BCM GPIO 19 (physical pin 35)
//! * MOSI: BCM GPIO 20 (physical pin 38)
//! * SCLK: BCM GPIO 21 (physical pin 40)
//! * SS: [`Ss0`] BCM GPIO 18 (physical pin 12), [`Ss1`] BCM GPIO 27 (physical pin 13)
//!
//! SPI6 is tied to the same GPIO pins as SPI1. It's not possible to enable both
//! buses at the same time.
//!
//! ### Alternative pins
//!
//! The GPIO pin numbers mentioned above are part of the default configuration.
//! Some of their functionality can be moved to different pins. Read
//! `/boot/overlays/README` for more information.
//!
//! ## Buffer size limits
//!
//! By default, `spidev` can handle up to 4096 bytes in a single transfer. You
//! can increase this limit to a maximum of 65536 bytes by appending
//! `spidev.bufsiz=65536` to the single line of parameters in `/boot/cmdline.txt`.
//! Remember to reboot the Raspberry Pi afterwards. The current value of bufsiz
//! can be checked with `cat /sys/module/spidev/parameters/bufsiz`.
//!
//! ## Not supported
//!
//! Some features exposed by the generic `spidev` interface aren't fully
//! supported by the underlying driver or the BCM283x SoC: `SPI_LSB_FIRST` (LSB
//! first bit order), `SPI_3WIRE` (bidirectional mode), `SPI_LOOP` (loopback mode),
//! `SPI_NO_CS` (no Slave Select), `SPI_READY` (slave ready signal),
//! `SPI_TX_DUAL`/`SPI_RX_DUAL` (dual SPI), `SPI_TX_QUAD`/`SPI_RX_QUAD` (quad SPI),
//! and any number of bits per word other than 8.
//!
//! If your slave device requires `SPI_LSB_FIRST`, you can use the
//! [`reverse_bits`] function instead to reverse the bit order in software.
//!
//! `SPI_LOOP` mode can be achieved by connecting the MOSI and MISO pins
//! together.
//!
//! `SPI_NO_CS` can be implemented by connecting the Slave Select pin on your
//! slave device to any other available GPIO pin on the Pi, and manually
//! changing it to high and low as needed.
//!
//! [`Ss0`]: enum.SlaveSelect.html
//! [`Ss1`]: enum.SlaveSelect.html
//! [`Ss2`]: enum.SlaveSelect.html
//! [`Mode1`]: enum.Mode.html
//! [`Mode3`]: enum.Mode.html
//! [`reverse_bits`]: fn.reverse_bits.html

use std::error;
use std::fmt;
use std::fs::{File, OpenOptions};
use std::io;
use std::io::{Read, Write};
use std::marker::PhantomData;
use std::os::unix::io::AsRawFd;
use std::result;

#[cfg(feature = "hal")]
mod hal;
mod ioctl;
mod segment;

pub use self::segment::Segment;
#[cfg(feature = "hal")]
pub use hal::SimpleHalSpiDevice;

/// Errors that can occur when accessing the SPI peripheral.
#[derive(Debug)]
pub enum Error {
    /// I/O error.
    Io(io::Error),
    /// The specified number of bits per word is not supported.
    ///
    /// The Raspberry Pi currently only supports 8 bit words. Any other value
    /// will trigger this error.
    BitsPerWordNotSupported(u8),
    /// The specified bit order is not supported.
    ///
    /// The Raspberry Pi currently only supports the [`MsbFirst`] bit order. If you
    /// need the [`LsbFirst`] bit order, you can use the [`reverse_bits`] function
    /// instead to reverse the bit order in software by converting your write
    /// buffer before sending it to the slave device, and your read buffer after
    /// reading any incoming data.
    ///
    /// [`MsbFirst`]: enum.BitOrder.html
    /// [`LsbFirst`]: enum.BitOrder.html
    /// [`reverse_bits`]: fn.reverse_bits.html
    BitOrderNotSupported(BitOrder),
    /// The specified clock speed is not supported.
    ClockSpeedNotSupported(u32),
    /// The specified mode is not supported.
    ModeNotSupported(Mode),
    /// The specified Slave Select polarity is not supported.
    PolarityNotSupported(Polarity),
}

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            Error::Io(ref err) => write!(f, "I/O error: {}", err),
            Error::BitsPerWordNotSupported(bits_per_word) => {
                write!(f, "Bits per word value not supported: {}", bits_per_word)
            }
            Error::BitOrderNotSupported(bit_order) => {
                write!(f, "Bit order value not supported: {:?}", bit_order)
            }
            Error::ClockSpeedNotSupported(clock_speed) => {
                write!(f, "Clock speed value not supported: {}", clock_speed)
            }
            Error::ModeNotSupported(mode) => write!(f, "Mode value not supported: {:?}", mode),
            Error::PolarityNotSupported(polarity) => {
                write!(f, "Polarity value not supported: {:?}", polarity)
            }
        }
    }
}

impl error::Error for Error {}

impl From<io::Error> for Error {
    fn from(err: io::Error) -> Error {
        Error::Io(err)
    }
}

/// Result type returned from methods that can have `spi::Error`s.
pub type Result<T> = result::Result<T, Error>;

/// Reverses the bits of each byte in `buffer`.
///
/// Use this function to switch the bit order between most-significant bit first
/// and least-significant bit first.
#[inline(always)]
pub fn reverse_bits(buffer: &mut [u8]) {
    for byte in buffer {
        *byte = byte.reverse_bits();
    }
}

/// SPI buses.
///
/// The Raspberry Pi exposes up to five SPI buses, depending on the model and
/// your `/boot/config.txt` configuration. More information can be found [here].
///
/// [here]: index.html
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum Bus {
    Spi0 = 0,
    Spi1 = 1,
    Spi2 = 2,
    Spi3 = 3,
    Spi4 = 4,
    Spi5 = 5,
    Spi6 = 6,
}

impl fmt::Display for Bus {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            Bus::Spi0 => write!(f, "Spi0"),
            Bus::Spi1 => write!(f, "Spi1"),
            Bus::Spi2 => write!(f, "Spi2"),
            Bus::Spi3 => write!(f, "Spi3"),
            Bus::Spi4 => write!(f, "Spi4"),
            Bus::Spi5 => write!(f, "Spi5"),
            Bus::Spi6 => write!(f, "Spi6"),
        }
    }
}

/// Slave Select pins.
///
/// Slave Select is used to signal which slave device should pay attention to
/// the SPI bus. Slave Select (SS) is the more commonly used name, but
/// it's also known as Chip Select (CS) or Chip Enable (CE). Throughout the Raspberry
/// Pi's documentation, config files and BCM2835 datasheet, multiple different names
/// are used. Any pins referred to as CE0, CE1, and CE2 or CS0, CS1, and CS2 are equivalent
/// to `Ss0`, `Ss1`, and `Ss2`.
///
/// The number of available Slave Select pins for the selected SPI bus depends
/// on your `/boot/config.txt` configuration. More information can be found
/// [here].
///
/// [here]: index.html
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum SlaveSelect {
    Ss0 = 0,
    Ss1 = 1,
    Ss2 = 2,
    Ss3 = 3,
    Ss4 = 4,
    Ss5 = 5,
    Ss6 = 6,
    Ss7 = 7,
    Ss8 = 8,
    Ss9 = 9,
    Ss10 = 10,
    Ss11 = 11,
    Ss12 = 12,
    Ss13 = 13,
    Ss14 = 14,
    Ss15 = 15,
}

impl fmt::Display for SlaveSelect {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            SlaveSelect::Ss0 => write!(f, "Ss0"),
            SlaveSelect::Ss1 => write!(f, "Ss1"),
            SlaveSelect::Ss2 => write!(f, "Ss2"),
            SlaveSelect::Ss3 => write!(f, "Ss3"),
            SlaveSelect::Ss4 => write!(f, "Ss4"),
            SlaveSelect::Ss5 => write!(f, "Ss5"),
            SlaveSelect::Ss6 => write!(f, "Ss6"),
            SlaveSelect::Ss7 => write!(f, "Ss7"),
            SlaveSelect::Ss8 => write!(f, "Ss8"),
            SlaveSelect::Ss9 => write!(f, "Ss9"),
            SlaveSelect::Ss10 => write!(f, "Ss10"),
            SlaveSelect::Ss11 => write!(f, "Ss11"),
            SlaveSelect::Ss12 => write!(f, "Ss12"),
            SlaveSelect::Ss13 => write!(f, "Ss13"),
            SlaveSelect::Ss14 => write!(f, "Ss14"),
            SlaveSelect::Ss15 => write!(f, "Ss15"),
        }
    }
}

/// Slave Select polarities.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum Polarity {
    ActiveLow = 0,
    ActiveHigh = 1,
}

impl fmt::Display for Polarity {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            Polarity::ActiveLow => write!(f, "ActiveLow"),
            Polarity::ActiveHigh => write!(f, "ActiveHigh"),
        }
    }
}

/// SPI modes indicating the clock polarity and phase.
///
/// Select the appropriate SPI mode for your device. Each mode configures the
/// clock polarity (CPOL) and clock phase (CPHA) as shown below:
///
/// * Mode0: CPOL 0, CPHA 0
/// * Mode1: CPOL 0, CPHA 1
/// * Mode2: CPOL 1, CPHA 0
/// * Mode3: CPOL 1, CPHA 1
///
/// The [`Spi0`] bus supports all 4 modes. [`Spi1`] and [`Spi2`] only support
/// `Mode0` and `Mode2`.
///
/// More information on clock polarity and phase can be found on [Wikipedia].
///
/// [`Spi0`]: enum.Bus.html
/// [`Spi1`]: enum.Bus.html
/// [`Spi2`]: enum.Bus.html
/// [Wikipedia]: https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus#Clock_polarity_and_phase
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum Mode {
    Mode0 = 0,
    Mode1 = 1,
    Mode2 = 2,
    Mode3 = 3,
}

impl fmt::Display for Mode {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            Mode::Mode0 => write!(f, "Mode0"),
            Mode::Mode1 => write!(f, "Mode1"),
            Mode::Mode2 => write!(f, "Mode2"),
            Mode::Mode3 => write!(f, "Mode3"),
        }
    }
}

/// Bit orders.
///
/// The bit order determines in what order data is shifted out and shifted in.
/// Select the bit order that's appropriate for the device you're
/// communicating with.
///
/// `MsbFirst` will transfer the most-significant bit first. `LsbFirst` will
/// transfer the least-significant bit first.
///
/// The Raspberry Pi currently only supports the `MsbFirst` bit order. If you
/// need the `LsbFirst` bit order, you can use the [`reverse_bits`] function
/// instead to reverse the bit order in software by converting your write
/// buffer before sending it to the slave device, and your read buffer after
/// reading any incoming data.
///
/// [`reverse_bits`]: fn.reverse_bits.html
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum BitOrder {
    MsbFirst = 0,
    LsbFirst = 1,
}

impl fmt::Display for BitOrder {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            BitOrder::MsbFirst => write!(f, "MsbFirst"),
            BitOrder::LsbFirst => write!(f, "LsbFirst"),
        }
    }
}

/// Provides access to the Raspberry Pi's SPI peripherals.
///
/// Before using `Spi`, make sure your Raspberry Pi has the necessary SPI buses
/// and Slave Select pins enabled. More information can be found [here].
///
/// The `embedded-hal` [`blocking::spi::Transfer<u8>`], [`blocking::spi::Write<u8>`]
/// and [`spi::FullDuplex<u8>`] trait
/// implementations for `Spi` can be enabled by specifying the optional `hal`
/// feature in the dependency declaration for the `rppal` crate.
///
/// [here]: index.html
/// [`blocking::spi::Transfer<u8>`]: ../../embedded_hal/blocking/spi/trait.Transfer.html
/// [`blocking::spi::Write<u8>`]: ../../embedded_hal/blocking/spi/trait.Write.html
/// [`spi::FullDuplex<u8>`]: ../../embedded_hal/spi/trait.FullDuplex.html
pub struct Spi {
    spidev: File,
    // Stores the last read value. Used for embedded_hal::spi::FullDuplex.
    #[cfg(feature = "hal")]
    last_read: Option<u8>,
    // The not_sync field is a workaround to force !Sync. Spi isn't safe for
    // Sync because of ioctl() and the underlying drivers. This avoids needing
    // #![feature(optin_builtin_traits)] to manually add impl !Sync for Spi.
    not_sync: PhantomData<*const ()>,
}

impl Spi {
    /// Constructs a new `Spi`.
    ///
    /// `bus` and `slave_select` specify the selected SPI bus and one of its
    /// associated Slave Select pins.
    ///
    /// `clock_speed` defines the maximum clock frequency in hertz (Hz). The SPI driver
    /// will automatically round down to the closest valid frequency.
    ///
    /// `mode` selects the clock polarity and phase.
    pub fn new(bus: Bus, slave_select: SlaveSelect, clock_speed: u32, mode: Mode) -> Result<Spi> {
        // The following options currently aren't supported by spidev in Raspbian Stretch on the Pi:
        //
        // LSB_FIRST - ioctl() returns EINVAL when set
        // 3WIRE - neither MOSI nor MISO show any outgoing data in half-duplex mode
        // LOOP - ioctl() returns EINVAL when set
        // NO_CS - SS is still set to active (tried both file write() and ioctl())
        // READY - ioctl() returns EINVAL when set
        // TX_DUAL/TX_QUAD/RX_DUAL/RX_QUAD - Not supported by BCM283x
        // bits per word - any value other than 0 or 8 returns EINVAL when set

        let spidev = OpenOptions::new()
            .read(true)
            .write(true)
            .open(format!("/dev/spidev{}.{}", bus as u8, slave_select as u8))?;

        // Reset all mode flags
        if let Err(e) = ioctl::set_mode32(spidev.as_raw_fd(), mode as u32) {
            if e.kind() == io::ErrorKind::InvalidInput {
                return Err(Error::ModeNotSupported(mode));
            } else {
                return Err(Error::Io(e));
            }
        }

        let spi = Spi {
            spidev,
            #[cfg(feature = "hal")]
            last_read: None,
            not_sync: PhantomData,
        };

        // Set defaults and user-specified settings
        spi.set_bits_per_word(8)?;
        spi.set_clock_speed(clock_speed)?;

        Ok(spi)
    }

    /// Gets the bit order.
    pub fn bit_order(&self) -> Result<BitOrder> {
        let mut bit_order: u8 = 0;
        ioctl::lsb_first(self.spidev.as_raw_fd(), &mut bit_order)?;

        Ok(match bit_order {
            0 => BitOrder::MsbFirst,
            _ => BitOrder::LsbFirst,
        })
    }

    /// Sets the order in which bits are shifted out and in.
    ///
    /// The Raspberry Pi currently only supports the [`MsbFirst`] bit order. If you
    /// need the [`LsbFirst`] bit order, you can use the [`reverse_bits`] function
    /// instead to reverse the bit order in software by converting your write
    /// buffer before sending it to the slave device, and your read buffer after
    /// reading any incoming data.
    ///
    /// By default, `bit_order` is set to `MsbFirst`.
    ///
    /// [`MsbFirst`]: enum.BitOrder.html
    /// [`LsbFirst`]: enum.BitOrder.html
    /// [`reverse_bits`]: fn.reverse_bits.html
    pub fn set_bit_order(&self, bit_order: BitOrder) -> Result<()> {
        match ioctl::set_lsb_first(self.spidev.as_raw_fd(), bit_order as u8) {
            Ok(_) => Ok(()),
            Err(ref e) if e.kind() == io::ErrorKind::InvalidInput => {
                Err(Error::BitOrderNotSupported(bit_order))
            }
            Err(e) => Err(Error::Io(e)),
        }
    }

    /// Gets the number of bits per word.
    pub fn bits_per_word(&self) -> Result<u8> {
        let mut bits_per_word: u8 = 0;
        ioctl::bits_per_word(self.spidev.as_raw_fd(), &mut bits_per_word)?;

        Ok(bits_per_word)
    }

    /// Sets the number of bits per word.
    ///
    /// The Raspberry Pi currently only supports 8 bit words.
    ///
    /// By default, `bits_per_word` is set to 8.
    pub fn set_bits_per_word(&self, bits_per_word: u8) -> Result<()> {
        match ioctl::set_bits_per_word(self.spidev.as_raw_fd(), bits_per_word) {
            Ok(_) => Ok(()),
            Err(ref e) if e.kind() == io::ErrorKind::InvalidInput => {
                Err(Error::BitsPerWordNotSupported(bits_per_word))
            }
            Err(e) => Err(Error::Io(e)),
        }
    }

    /// Gets the clock frequency in hertz (Hz).
    pub fn clock_speed(&self) -> Result<u32> {
        let mut clock_speed: u32 = 0;
        ioctl::clock_speed(self.spidev.as_raw_fd(), &mut clock_speed)?;

        Ok(clock_speed)
    }

    /// Sets the clock frequency in hertz (Hz).
    ///
    /// The SPI driver will automatically round down to the closest valid frequency.
    pub fn set_clock_speed(&self, clock_speed: u32) -> Result<()> {
        match ioctl::set_clock_speed(self.spidev.as_raw_fd(), clock_speed) {
            Ok(_) => Ok(()),
            Err(ref e) if e.kind() == io::ErrorKind::InvalidInput => {
                Err(Error::ClockSpeedNotSupported(clock_speed))
            }
            Err(e) => Err(Error::Io(e)),
        }
    }

    /// Gets the SPI mode.
    pub fn mode(&self) -> Result<Mode> {
        let mut mode: u8 = 0;
        ioctl::mode(self.spidev.as_raw_fd(), &mut mode)?;

        Ok(match mode & 0x03 {
            0x01 => Mode::Mode1,
            0x02 => Mode::Mode2,
            0x03 => Mode::Mode3,
            _ => Mode::Mode0,
        })
    }

    /// Sets the SPI mode.
    ///
    /// The SPI mode indicates the serial clock polarity and phase. Some modes
    /// may not be available depending on the SPI bus that's used.
    pub fn set_mode(&self, mode: Mode) -> Result<()> {
        let mut new_mode: u8 = 0;
        ioctl::mode(self.spidev.as_raw_fd(), &mut new_mode)?;

        // Make sure we only replace the CPOL/CPHA bits
        new_mode = (new_mode & !0x03) | (mode as u8);

        match ioctl::set_mode(self.spidev.as_raw_fd(), new_mode) {
            Ok(_) => Ok(()),
            Err(ref e) if e.kind() == io::ErrorKind::InvalidInput => {
                Err(Error::ModeNotSupported(mode))
            }
            Err(e) => Err(Error::Io(e)),
        }
    }

    /// Gets the Slave Select polarity.
    pub fn ss_polarity(&self) -> Result<Polarity> {
        let mut mode: u8 = 0;
        ioctl::mode(self.spidev.as_raw_fd(), &mut mode)?;

        if (mode & ioctl::MODE_CS_HIGH) == 0 {
            Ok(Polarity::ActiveLow)
        } else {
            Ok(Polarity::ActiveHigh)
        }
    }

    /// Sets Slave Select polarity.
    ///
    /// By default, the Slave Select polarity is set to `ActiveLow`.
    pub fn set_ss_polarity(&self, polarity: Polarity) -> Result<()> {
        let mut new_mode: u8 = 0;
        ioctl::mode(self.spidev.as_raw_fd(), &mut new_mode)?;

        if polarity == Polarity::ActiveHigh {
            new_mode |= ioctl::MODE_CS_HIGH;
        } else {
            new_mode &= !ioctl::MODE_CS_HIGH;
        }

        match ioctl::set_mode(self.spidev.as_raw_fd(), new_mode) {
            Ok(_) => Ok(()),
            Err(ref e) if e.kind() == io::ErrorKind::InvalidInput => {
                Err(Error::PolarityNotSupported(polarity))
            }
            Err(e) => Err(Error::Io(e)),
        }
    }

    /// Receives incoming data from the slave device and writes it to `buffer`.
    ///
    /// The SPI protocol doesn't indicate how much incoming data is waiting,
    /// so the total number of bytes read depends on the length of `buffer`.
    ///
    /// During the read, the MOSI line is kept in a state that results in a
    /// zero value byte shifted out for every byte `read` receives on the MISO
    /// line.
    ///
    /// Slave Select is set to active at the start of the read, and inactive
    /// when the read completes.
    ///
    /// Returns how many bytes were read.
    pub fn read(&mut self, buffer: &mut [u8]) -> Result<usize> {
        Ok(self.spidev.read(buffer)?)
    }

    /// Sends the outgoing data contained in `buffer` to the slave device.
    ///
    /// Any data received on the MISO line from the slave is ignored.
    ///
    /// Slave Select is set to active at the start of the write, and inactive
    /// when the write completes.
    ///
    /// Returns how many bytes were written.
    pub fn write(&mut self, buffer: &[u8]) -> Result<usize> {
        Ok(self.spidev.write(buffer)?)
    }

    /// Sends and receives data at the same time.
    ///
    /// SPI is a full-duplex protocol that shifts out bits to the slave device
    /// on the MOSI line while simultaneously shifting in bits it receives on
    /// the MISO line. `transfer` stores the incoming data in `read_buffer`,
    /// and sends the outgoing data contained in `write_buffer`.
    ///
    /// Because data is sent and received simultaneously, `transfer` will only
    /// transfer as many bytes as the shortest of the two buffers contains.
    ///
    /// Slave Select is set to active at the start of the transfer, and inactive
    /// when the transfer completes.
    ///
    /// Returns how many bytes were transferred.
    pub fn transfer(&self, read_buffer: &mut [u8], write_buffer: &[u8]) -> Result<usize> {
        let segment = Segment::new(read_buffer, write_buffer);

        ioctl::transfer(self.spidev.as_raw_fd(), &[segment])?;

        Ok(segment.len())
    }

    /// Transfers multiple half-duplex or full-duplex segments.
    ///
    /// `transfer_segments` transfers multiple segments in a single call. Each
    /// [`Segment`] contains a reference to either a read buffer or a write buffer,
    /// or both. Optional settings can be configured that override the SPI bus
    /// settings for that specific segment.
    ///
    /// By default, Slave Select stays active until all segments have been
    /// transferred. You can change this behavior using [`Segment::set_ss_change`].
    ///
    /// [`Segment`]: struct.Segment.html
    /// [`Segment::set_ss_change`]: struct.Segment.html#method.set_ss_change
    pub fn transfer_segments(&self, segments: &[Segment<'_, '_>]) -> Result<()> {
        ioctl::transfer(self.spidev.as_raw_fd(), segments)?;

        Ok(())
    }
}

// Send is safe for Spi, but we're marked !Send because of the dummy pointer that's
// needed to force !Sync.
unsafe impl Send for Spi {}

impl fmt::Debug for Spi {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Spi").field("spidev", &self.spidev).finish()
    }
}