1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
// Copyright (c) 2017-2019 Rene van der Meer
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

//! Interface for the UART peripherals and any USB to serial adapters.
//!
//! RPPAL controls the Raspberry Pi's UART peripherals through the `ttyAMA0`
//! (PL011) and `ttyS0` (mini UART) character devices. USB to serial adapters
//! are controlled using the `ttyUSBx` and `ttyACMx` character devices.
//!
//! ## UART peripherals
//!
//! The Raspberry Pi's BCM283x SoC features two UART peripherals.
//! `/dev/ttyAMA0` represents the PL011 UART, which offers a full set of
//! features. `/dev/ttyS0` represents an auxiliary peripheral that's referred
//! to as mini UART, with limited capabilities. More details on the differences
//! between the PL011 and mini UART can be found in the official Raspberry Pi
//! [documentation].
//!
//! On earlier Raspberry Pi models without Bluetooth, `/dev/ttyAMA0` is
//! configured as a Linux serial console. On more recent models with Bluetooth
//! (3A+, 3B, 3B+, Zero W), `/dev/ttyAMA0` is connected to the Bluetooth
//! module, and `/dev/ttyS0` is used as a serial console instead. Due to the
//! limitations of `/dev/ttyS0` and the requirement for a fixed core frequency,
//! in most cases you'll want to use `/dev/ttyAMA0` for serial communication.
//!
//! By default, TX (outgoing data) is tied to BCM GPIO 14 (physical pin 8) and
//! RX (incoming data) is tied to BCM GPIO 15 (physical pin 10). You can move
//! these lines to different GPIO pins using the `uart0` and `uart1` overlays,
//! but the alternative pin options aren't exposed through the GPIO header on
//! any of the current Raspberry Pi models. They are only available on the
//! Compute Module's SO-DIMM pads.
//!
//! ## Configure `/dev/ttyAMA0` for serial communication (recommended)
//!
//! Disable the Linux serial console by either deactivating it through
//! `sudo raspi-config`, or manually removing the parameter
//! `console=serial0,115200` from `/boot/cmdline.txt`.
//!
//! Remove any lines containing `enable_uart=0` or `enable_uart=1` from
//! `/boot/config.txt`.
//!
//! On Raspberry Pi models with a Bluetooth module, an extra step is required
//! to either disable Bluetooth or move it to `/dev/ttyS0`, so `/dev/ttyAMA0`
//! becomes available for serial communication.
//!
//! To disable Bluetooth, add `dtoverlay=pi3-disable-bt` to `/boot/config.txt`.
//! You'll also need to disable the service that initializes Bluetooth with
//! `sudo systemctl disable hciuart`.
//!
//! To move the Bluetooth module to `/dev/ttyS0`, instead of disabling it with
//! the above-mentioned steps, add `dtoverlay=pi3-miniuart-bt` and
//! `core_freq=250` to `/boot/config.txt`.
//!
//! Remember to reboot the Raspberry Pi after making any changes.
//!
//! ## Configure `/dev/ttyS0` for serial communication
//!
//! If you prefer to leave the Bluetooth module connected to `/dev/ttyAMA0`,
//! you can configure `/dev/ttyS0` for serial communication instead.
//!
//! Disable the Linux serial console by either deactivating it through
//! `sudo raspi-config`, or manually removing the parameter
//! `console=serial0,115200` from `/boot/cmdline.txt`.
//!
//! Add the line `enable_uart=1` to `/boot/config.txt` to enable serial
//! communication on `/dev/ttyS0`, which also sets a fixed core frequency.
//!
//! Remember to reboot the Raspberry Pi after making any changes.
//!
//! ## USB to serial adapters
//!
//! In addition to controlling the hardware UART peripherals, [`Uart`] can
//! also be used for USB to serial adapters. Depending on the type of
//! device, these can be accessed either through `/dev/ttyUSBx` or
//! `/dev/ttyACMx`, where `x` is an index starting at `0`. The numbering is
//! based on the order in which the devices are discovered by the kernel.
//!
//! When you have multiple USB to serial adapters connected at the same time,
//! you can uniquely identify a specific device by searching for the relevant
//! symlink in the `/dev/serial/by-id` directory, or by adding your own
//! `udev` rules.
//!
//! Support for automatic software (XON/XOFF) and hardware (RTS/CTS) flow
//! control for USB to serial adapters depends on the USB interface IC on the
//! device, and the relevant Linux driver. Some ICs use an older,
//! incompatible RTS/CTS implementation, sometimes referred to as legacy or
//! simplex mode, where RTS is used to indicate data is about to be
//! transmitted, rather than to request the external device to resume its
//! transmission.
//!
//! ## Hardware flow control
//!
//! The RTS/CTS hardware flow control implementation supported by [`Uart`]
//! and used by the Raspberry Pi's UART peripherals requires RTS on one
//! device to be connected to CTS on the other device. The RTS signal is
//! used to request the other device to pause or resume its transmission.
//!
//! Some devices use an older, incompatible RTS/CTS implementation, sometimes
//! referred to as legacy or simplex mode, where RTS is connected to RTS, and
//! CTS to CTS. The RTS signal is used to indicate data is about to be
//! transmitted. [`Uart`] is not compatible with this implementation.
//! Connecting the Raspberry Pi's RTS and CTS pins incorrectly could damage
//! the Pi or the external device.
//!
//! When [`Uart`] is controlling a UART peripheral, enabling hardware flow
//! control will also configure the RTS and CTS pins. On Raspberry Pi models
//! with a 40-pin GPIO header, RTS is tied to BCM GPIO 17 (physical pin 11)
//! and CTS is tied to BCM GPIO 16 (physical pin 36). RTS and CTS aren't
//! available on models with a 26-pin header, except for the Raspberry Pi B
//! Rev 2, which exposes RTS and CTS through its unpopulated P5 header with
//! RTS on BCM GPIO 31 (physical pin 6) and CTS on BCM GPIO 30 (physical pin
//! 5).
//!
//! The RTS and CTS pins are reset to their original state when [`Uart`] goes
//! out of scope. Note that `drop` methods aren't called when a process is
//! abnormally terminated, for instance when a user presses <kbd>Ctrl</kbd> +
//! <kbd>C</kbd> and the `SIGINT` signal isn't caught, which prevents [`Uart`]
//! from resetting the pins. You can catch those using crates such as
//! [`simple_signal`].
//!
//! ## Troubleshooting
//!
//! ### Permission denied
//!
//! If [`new`] or [`with_path`] returns an `io::ErrorKind::PermissionDenied`
//! error, make sure the file permissions for the specified device are correct,
//! and the current user is a member of the group that owns the device, which is
//! usually either `dialout` or `tty`.
//!
//! [documentation]: https://www.raspberrypi.org/documentation/configuration/uart.md
//! [`simple_signal`]: https://crates.io/crates/simple-signal
//! [`Uart`]: struct.Uart.html
//! [`new`]: struct.Uart.html#method.new
//! [`with_path`]: struct.Uart.html#method.with_path

use std::error;
use std::fmt;
use std::fs::{self, File, OpenOptions};
use std::io;
use std::io::{Read, Write};
use std::os::unix::fs::OpenOptionsExt;
use std::os::unix::io::{AsRawFd, RawFd};
use std::path::Path;
use std::result;
use std::time::Duration;

use libc::{c_int, O_NOCTTY, O_NONBLOCK};
use libc::{TIOCM_CAR, TIOCM_CTS, TIOCM_DSR, TIOCM_DTR, TIOCM_RNG, TIOCM_RTS};

use crate::gpio::{self, Gpio, IoPin, Mode};
use crate::system::{self, DeviceInfo, Model};

#[cfg(feature = "hal")]
mod hal;
mod termios;

const GPIO_RTS: u8 = 17;
const GPIO_CTS: u8 = 16;

const GPIO_RTS_BREV2: u8 = 31;
const GPIO_CTS_BREV2: u8 = 30;

const GPIO_RTS_MODE_UART0: Mode = Mode::Alt3;
const GPIO_CTS_MODE_UART0: Mode = Mode::Alt3;

const GPIO_RTS_MODE_UART1: Mode = Mode::Alt5;
const GPIO_CTS_MODE_UART1: Mode = Mode::Alt5;

/// Errors that can occur when accessing the UART peripheral.
#[derive(Debug)]
pub enum Error {
    /// I/O error.
    Io(io::Error),
    /// GPIO error.
    Gpio(gpio::Error),
    /// Invalid or unsupported value.
    InvalidValue,
}

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            Error::Io(ref err) => write!(f, "I/O error: {}", err),
            Error::Gpio(ref err) => write!(f, "GPIO error: {}", err),
            Error::InvalidValue => write!(f, "Invalid or unsupported value"),
        }
    }
}

impl error::Error for Error {}

impl From<io::Error> for Error {
    fn from(err: io::Error) -> Error {
        Error::Io(err)
    }
}

impl From<gpio::Error> for Error {
    fn from(err: gpio::Error) -> Error {
        Error::Gpio(err)
    }
}

impl From<system::Error> for Error {
    fn from(_err: system::Error) -> Error {
        Error::Gpio(gpio::Error::UnknownModel)
    }
}

/// Result type returned from methods that can have `uart::Error`s.
pub type Result<T> = result::Result<T, Error>;

/// Parity bit modes.
///
/// The parity bit mode determines how the parity bit is calculated.
///
/// `None` omits the parity bit. `Even` and `Odd` count the total number of
/// 1-bits in the data bits. `Mark` and `Space` always set the parity
/// bit to `1` or `0` respectively.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum Parity {
    /// No parity bit.
    None,
    /// Even parity.
    Even,
    /// Odd parity.
    Odd,
    /// Sets parity bit to `1`.
    Mark,
    /// Sets parity bit to `0`.
    Space,
}

impl fmt::Display for Parity {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            Parity::None => write!(f, "None"),
            Parity::Even => write!(f, "Even"),
            Parity::Odd => write!(f, "Odd"),
            Parity::Mark => write!(f, "Mark"),
            Parity::Space => write!(f, "Space"),
        }
    }
}

/// Parity check modes.
///
/// The parity check mode determines how parity errors are handled.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum ParityCheck {
    /// Ignores parity errors.
    None,
    /// Removes bytes with parity errors from the input queue.
    Strip,
    /// Replaces bytes with parity errors with a `0` byte.
    Replace,
    /// Marks bytes with parity errors with a preceding `255` and `0` byte.
    ///
    /// Actual `255` bytes are replaced with two `255` bytes to avoid confusion
    /// with parity errors.
    Mark,
}

impl fmt::Display for ParityCheck {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            ParityCheck::None => write!(f, "None"),
            ParityCheck::Strip => write!(f, "Strip"),
            ParityCheck::Replace => write!(f, "Replace"),
            ParityCheck::Mark => write!(f, "Mark"),
        }
    }
}

/// Queue types.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum Queue {
    /// Input queue.
    Input,
    /// Output queue.
    Output,
    /// Both queues.
    Both,
}

impl fmt::Display for Queue {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            Queue::Input => write!(f, "Input"),
            Queue::Output => write!(f, "Output"),
            Queue::Both => write!(f, "Both"),
        }
    }
}

/// Control signal status.
pub struct Status {
    tiocm: c_int,
}

impl Status {
    /// Returns `true` if RTS is active.
    ///
    /// RTS (active low) is controlled by [`Uart`]. An active signal indicates
    /// [`Uart`] is ready to receive more data.
    ///
    /// [`Uart`]: struct.Uart.html
    pub fn rts(&self) -> bool {
        self.tiocm & TIOCM_RTS > 0
    }

    /// Returns `true` if CTS is active.
    ///
    /// CTS (active low) is controlled by the external device. An active signal
    /// indicates the external device is ready to receive more data.
    pub fn cts(&self) -> bool {
        self.tiocm & TIOCM_CTS > 0
    }

    /// Returns `true` if DTR is active.
    ///
    /// DTR (active low) is controlled by [`Uart`]. When communicating with a
    /// modem, an active signal is used to place or accept a call. An inactive
    /// signal causes the modem to hang up. Other devices may use DTR and DSR
    /// for flow control.
    ///
    /// DTR is not supported by the Raspberry Pi's UART peripherals,
    /// but may be available on some USB to serial adapters.
    ///
    /// [`Uart`]: struct.Uart.html
    pub fn dtr(&self) -> bool {
        self.tiocm & TIOCM_DTR > 0
    }

    /// Returns `true` if DSR is active.
    ///
    /// DSR (active low) is controlled by the external device. When
    /// communicating with a modem, an active signal indicates the modem is
    /// ready for data transmission. Other devices may use DTR and DSR for flow
    /// control.
    ///
    /// DSR is not supported by the Raspberry Pi's UART peripherals,
    /// but may be available on some USB to serial adapters.
    pub fn dsr(&self) -> bool {
        self.tiocm & TIOCM_DSR > 0
    }

    /// Returns `true` if DCD is active.
    ///
    /// DCD (active low) is controlled by the external device. When
    /// communicating with a modem, an active signal indicates a connection is
    /// established.
    ///
    /// DCD is not supported by the Raspberry Pi's UART peripherals,
    /// but may be available on some USB to serial adapters.
    pub fn dcd(&self) -> bool {
        self.tiocm & TIOCM_CAR > 0
    }

    /// Returns `true` if RI is active.
    ///
    /// RI (active low) is controlled by the external device. When
    /// communicating with a modem, an active signal indicates an incoming
    /// call.
    ///
    /// RI is not supported by the Raspberry Pi's UART peripherals,
    /// but may be available on some USB to serial adapters.
    pub fn ri(&self) -> bool {
        self.tiocm & TIOCM_RNG > 0
    }
}

impl fmt::Debug for Status {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Status")
            .field("rts", &self.rts())
            .field("cts", &self.cts())
            .field("dtr", &self.dtr())
            .field("dsr", &self.dsr())
            .field("dcd", &self.dcd())
            .field("ri", &self.ri())
            .finish()
    }
}

#[derive(Debug)]
struct UartInner {
    device: File,
    fd: RawFd,
    rtscts_mode: Option<(Mode, Mode)>,
    rtscts_pins: Option<(IoPin, IoPin)>,
    blocking_read: bool,
    blocking_write: bool,
    baud_rate: u32,
    parity: Parity,
    parity_check: ParityCheck,
    data_bits: u8,
    stop_bits: u8,
    software_flow_control: bool,
    hardware_flow_control: bool,
}

/// Provides access to the Raspberry Pi's UART peripherals and any USB to
/// serial adapters.
///
/// The `embedded-hal` [`serial::Read`], [`serial::Write`] and [`blocking::serial::Write`] trait
/// implementations for `Uart` can be enabled by specifying the optional `hal` feature in the
/// dependency declaration for the `rppal` crate.
///
/// [`serial::Read`]: ../../embedded_hal/serial/trait.Read.html
/// [`serial::Write`]: ../../embedded_hal/serial/trait.Write.html
/// [`blocking::serial::Write`]: ../../embedded_hal/blocking/serial/trait.Write.html
#[derive(Debug)]
pub struct Uart {
    inner: UartInner,
}

impl Uart {
    /// Constructs a new `Uart`.
    ///
    /// `new` attempts to identify the UART peripheral tied to BCM GPIO 14 and
    /// 15, and then calls [`with_path`] with the appropriate device path.
    ///
    /// [`with_path`]: #method.with_path
    pub fn new(baud_rate: u32, parity: Parity, data_bits: u8, stop_bits: u8) -> Result<Uart> {
        Self::with_path("/dev/serial0", baud_rate, parity, data_bits, stop_bits)
    }

    /// Constructs a new `Uart` connected to the serial character device
    /// specified by `path`.
    ///
    /// `with_path` can be used to connect to either a UART peripheral or a USB
    /// to serial adapter.
    ///
    /// When a new `Uart` is constructed, the specified device is configured
    /// for non-canonical mode which processes input per character, ignores any
    /// special terminal input or output characters and disables local echo. DCD
    /// is ignored, all flow control is disabled, and the input and output queues
    /// are flushed.
    pub fn with_path<P: AsRef<Path>>(
        path: P,
        baud_rate: u32,
        parity: Parity,
        data_bits: u8,
        stop_bits: u8,
    ) -> Result<Uart> {
        // Follow symbolic links
        let path = fs::canonicalize(path)?;

        // Check if we're using /dev/ttyAMA0 or /dev/ttyS0 so we can set the
        // correct RTS/CTS pin modes when needed.
        let rtscts_mode = if let Some(path_str) = path.to_str() {
            match path_str {
                "/dev/ttyAMA0" => Some((GPIO_RTS_MODE_UART0, GPIO_CTS_MODE_UART0)),
                "/dev/ttyS0" => Some((GPIO_RTS_MODE_UART1, GPIO_CTS_MODE_UART1)),
                _ => None,
            }
        } else {
            None
        };

        let device = OpenOptions::new()
            .read(true)
            .write(true)
            .custom_flags(O_NOCTTY | O_NONBLOCK)
            .open(path)?;

        let fd = device.as_raw_fd();

        // Enables character input mode, disables echoing and any special
        // processing
        termios::set_raw_mode(fd)?;

        // Non-blocking reads
        termios::set_read_mode(fd, 0, Duration::default())?;

        // Ignore modem control lines (CLOCAL)
        termios::ignore_carrier_detect(fd)?;

        // Enable receiver (CREAD)
        termios::enable_read(fd)?;

        // Disable software flow control (XON/XOFF)
        termios::set_software_flow_control(fd, false, false)?;

        // Disable hardware flow control (RTS/CTS)
        termios::set_hardware_flow_control(fd, false)?;

        termios::set_line_speed(fd, baud_rate)?;
        termios::set_parity(fd, parity)?;
        termios::set_data_bits(fd, data_bits)?;
        termios::set_stop_bits(fd, stop_bits)?;

        // Pass through parity errors unfiltered
        termios::set_parity_check(fd, ParityCheck::None)?;

        // Flush the input and output queue
        termios::flush(fd, Queue::Both)?;

        Ok(Uart {
            inner: UartInner {
                device,
                fd,
                rtscts_mode,
                rtscts_pins: None,
                blocking_read: false,
                blocking_write: false,
                baud_rate,
                parity,
                parity_check: ParityCheck::None,
                data_bits,
                stop_bits,
                software_flow_control: false,
                hardware_flow_control: false,
            },
        })
    }

    /// Returns the line speed in baud (Bd).
    pub fn baud_rate(&self) -> u32 {
        self.inner.baud_rate
    }

    /// Sets the line speed in baud (Bd).
    ///
    /// On the Raspberry Pi, baud rate is equivalent to bit rate in bits per
    /// second (bit/s).
    ///
    /// Accepted values:
    /// `0`, `50`, `75`, `110`, `134`, `150`, `200`, `300`, `600`, `1_200`,
    /// `1_800`, `2_400`, `4_800`, `9_600`, `19_200`, `38_400`, `57_600`,
    /// `115_200`, `230_400`, `460_800`, `500_000`, `576_000`, `921_600`,
    /// `1_000_000`, `1_152_000`, `1_500_000`, `2_000_000`, `2_500_000`,
    /// `3_000_000`, `3_500_000`, `4_000_000`.
    ///
    /// Support for some values may be device-dependent.
    pub fn set_baud_rate(&mut self, baud_rate: u32) -> Result<()> {
        termios::set_line_speed(self.inner.fd, baud_rate)?;

        self.inner.baud_rate = baud_rate;

        Ok(())
    }

    /// Returns the parity bit mode.
    pub fn parity(&self) -> Parity {
        self.inner.parity
    }

    /// Sets the parity bit mode.
    ///
    /// The parity bit mode determines how the parity bit is calculated.
    ///
    /// Support for some modes may be device-dependent.
    pub fn set_parity(&mut self, parity: Parity) -> Result<()> {
        termios::set_parity(self.inner.fd, parity)?;

        self.inner.parity = parity;

        Ok(())
    }

    /// Returns the parity check mode for incoming data.
    pub fn parity_check(&self) -> ParityCheck {
        self.inner.parity_check
    }

    /// Configures parity checking for incoming data.
    ///
    /// The parity check mode determines how parity errors are handled.
    ///
    /// By default, `parity_check` is set to [`None`].
    ///
    /// Support for some modes may be device-dependent.
    ///
    /// [`None`]: enum.ParityCheck.html#variant.None
    pub fn set_parity_check(&mut self, parity_check: ParityCheck) -> Result<()> {
        termios::set_parity_check(self.inner.fd, parity_check)?;

        self.inner.parity_check = parity_check;

        Ok(())
    }

    /// Returns the number of data bits.
    pub fn data_bits(&self) -> u8 {
        self.inner.data_bits
    }

    /// Sets the number of data bits.
    ///
    /// Accepted values: `5`, `6`, `7`, `8`.
    ///
    /// Support for some values may be device-dependent.
    pub fn set_data_bits(&mut self, data_bits: u8) -> Result<()> {
        termios::set_data_bits(self.inner.fd, data_bits)?;

        self.inner.data_bits = data_bits;

        Ok(())
    }

    /// Returns the number of stop bits.
    pub fn stop_bits(&self) -> u8 {
        self.inner.stop_bits
    }

    /// Sets the number of stop bits.
    ///
    /// Accepted values: `1`, `2`.
    ///
    /// Support for some values may be device-dependent.
    pub fn set_stop_bits(&mut self, stop_bits: u8) -> Result<()> {
        termios::set_stop_bits(self.inner.fd, stop_bits)?;

        self.inner.stop_bits = stop_bits;

        Ok(())
    }

    /// Returns the status of the control signals.
    pub fn status(&self) -> Result<Status> {
        let tiocm = termios::status(self.inner.fd)?;

        Ok(Status { tiocm })
    }

    /// Sets DTR to active (`true`) or inactive (`false`).
    ///
    /// DTR is not supported by the Raspberry Pi's UART peripherals,
    /// but may be available on some USB to serial adapters.
    pub fn set_dtr(&mut self, dtr: bool) -> Result<()> {
        termios::set_dtr(self.inner.fd, dtr)
    }

    /// Sets RTS to active (`true`) or inactive (`false`).
    pub fn set_rts(&mut self, rts: bool) -> Result<()> {
        termios::set_rts(self.inner.fd, rts)
    }

    /// Returns `true` if XON/XOFF software flow control is enabled.
    pub fn software_flow_control(&self) -> bool {
        self.inner.software_flow_control
    }

    /// Enables or disables XON/XOFF software flow control.
    ///
    /// When software flow control is enabled, incoming XON (decimal 17) and
    /// XOFF (decimal 19) control characters are filtered from the input queue.
    /// When XOFF is received, the transmission of data in the output queue is
    /// paused until the external device sends XON. XOFF is automatically sent
    /// to the external device to prevent the input queue from overflowing.
    /// XON is sent when the input queue is ready for more data. You can also
    /// manually send these control characters by calling [`send_stop`] and
    /// [`send_start`].
    ///
    /// By default, software flow control is disabled.
    ///
    /// Support for XON/XOFF software flow control is
    /// device-dependent. You can manually implement XON/XOFF by disabling
    /// software flow control, parsing incoming XON/XOFF control characters
    /// received with [`read`], and sending XON/XOFF when needed using
    /// [`write`].
    ///
    /// [`send_start`]: #method.send_start
    /// [`send_stop`]: #method.send_stop
    /// [`read`]: #method.read
    /// [`write`]: #method.write
    pub fn set_software_flow_control(&mut self, software_flow_control: bool) -> Result<()> {
        termios::set_software_flow_control(
            self.inner.fd,
            software_flow_control,
            software_flow_control,
        )?;

        self.inner.software_flow_control = software_flow_control;

        Ok(())
    }

    /// Returns `true` if RTS/CTS hardware flow control is enabled.
    pub fn hardware_flow_control(&self) -> bool {
        self.inner.hardware_flow_control
    }

    /// Enables or disables RTS/CTS hardware flow control.
    ///
    /// When hardware flow control is enabled, the RTS line (active low) is
    /// automatically driven high to prevent the input queue from overflowing,
    /// and driven low when the input queue is ready for more data. When the
    /// CTS line (active low) is driven high by the external device, all data
    /// in the output queue is held until CTS is driven low. You can also
    /// manually change the active state of RTS by calling [`send_stop`] and
    /// [`send_start`].
    ///
    /// When `Uart` is controlling a UART peripheral, enabling hardware flow
    /// control will also configure the RTS and CTS pins.
    ///
    /// More information on hardware flow control can be found [here].
    ///
    /// By default, hardware flow control is disabled.
    ///
    /// Support for RTS/CTS hardware flow control is device-dependent. You can
    /// manually implement RTS/CTS using [`cts`], [`send_stop`] and
    /// [`send_start`], or by disabling hardware flow control and configuring
    /// an [`OutputPin`] for RTS and an [`InputPin`] for CTS.
    ///
    /// [here]: index.html#hardware-flow-control
    /// [`cts`]: struct.Status.html#method.cts
    /// [`send_start`]: #method.send_start
    /// [`send_stop`]: #method.send_stop
    /// [`OutputPin`]: ../gpio/struct.OutputPin.html
    /// [`InputPin`]: ../gpio/struct.InputPin.html
    pub fn set_hardware_flow_control(&mut self, hardware_flow_control: bool) -> Result<()> {
        if hardware_flow_control && self.inner.rtscts_pins.is_none() {
            // Configure and store RTS/CTS GPIO pins for UART0/UART1, so their
            // mode is automatically reset when Uart goes out of scope.
            if let Some((rts_mode, cts_mode)) = self.inner.rtscts_mode {
                let gpio = Gpio::new()?;

                let (gpio_rts, gpio_cts) = if DeviceInfo::new()?.model() == Model::RaspberryPiBRev2
                {
                    // The Pi B Rev 2 exposes RTS/CTS through its (unpopulated) P5 header
                    (GPIO_RTS_BREV2, GPIO_CTS_BREV2)
                } else {
                    // All other models with a 40-pin header use these GPIO pins
                    (GPIO_RTS, GPIO_CTS)
                };

                let pin_rts = gpio.get(gpio_rts)?.into_io(rts_mode);
                let pin_cts = gpio.get(gpio_cts)?.into_io(cts_mode);

                self.inner.rtscts_pins = Some((pin_rts, pin_cts));
            }
        } else if !hardware_flow_control {
            self.inner.rtscts_pins = None;
        }

        termios::set_hardware_flow_control(self.inner.fd, hardware_flow_control)?;

        self.inner.hardware_flow_control = hardware_flow_control;

        Ok(())
    }

    /// Requests the external device to pause its transmission using flow control.
    ///
    /// If software flow control is enabled, `send_stop`
    /// sends the XOFF control character.
    ///
    /// If hardware flow control is enabled, `send_stop` sets RTS to its
    /// inactive state.
    pub fn send_stop(&self) -> Result<()> {
        if self.inner.software_flow_control {
            termios::send_stop(self.inner.fd)?;
        }

        if self.inner.hardware_flow_control {
            termios::set_rts(self.inner.fd, false)?;
        }

        Ok(())
    }

    /// Requests the external device to resume its transmission using flow control.
    ///
    /// If software flow control is enabled, `send_start`
    /// sends the XON control character.
    ///
    /// If hardware flow control is enabled, `send_start` sets RTS to its
    /// active state.
    pub fn send_start(&self) -> Result<()> {
        if self.inner.software_flow_control {
            termios::send_start(self.inner.fd)?;
        }

        if self.inner.hardware_flow_control {
            termios::set_rts(self.inner.fd, true)?;
        }

        Ok(())
    }

    /// Returns `true` if [`read`] is configured to block when needed.
    ///
    /// [`read`]: #method.write
    pub fn is_read_blocking(&self) -> bool {
        self.inner.blocking_read
    }

    /// Returns `true` if [`write`] is configured to block when needed.
    ///
    /// [`write`]: #method.write
    pub fn is_write_blocking(&self) -> bool {
        self.inner.blocking_write
    }

    /// Sets the blocking mode for subsequent calls to [`read`].
    ///
    /// `min_length` indicates the minimum number of requested bytes. This
    /// value may differ from the actual buffer length. Maximum value: 255
    /// bytes.
    ///
    /// `timeout` indicates how long [`read`] blocks while waiting for
    /// incoming data. `timeout` uses a 0.1 second resolution. Maximum
    /// value: 25.5 seconds.
    ///
    /// [`read`] operates in one of four modes, depending on the specified
    /// `min_length` and `timeout` values:
    ///
    /// * **Non-blocking read** (`min_length` = 0, `timeout` = 0). [`read`]
    /// retrieves any available data and returns immediately.
    /// * **Blocking read** (`min_length` > 0, `timeout` = 0). [`read`] blocks
    /// until at least `min_length` bytes are available, or the provided buffer
    /// is full.
    /// * **Read with timeout** (`min_length` = 0, `timeout` > 0). [`read`]
    /// blocks until at least one byte is available, or the `timeout` duration
    /// elapses.
    /// * **Read with inter-byte timeout** (`min_length` > 0, `timeout` > 0).
    /// [`read`] blocks until at least `min_length` bytes are available, the
    /// provided buffer is full, or the `timeout` duration elapses
    /// after receiving one or more bytes. The timer is started after an
    /// initial byte becomes available, and is restarted after each additional
    /// byte. That means [`read`] will block indefinitely until at least one
    /// byte has been received.
    ///
    /// By default, [`read`] is configured as non-blocking.
    ///
    /// [`read`]: #method.read
    pub fn set_read_mode(&mut self, min_length: u8, timeout: Duration) -> Result<()> {
        termios::set_read_mode(self.inner.fd, min_length, timeout)?;

        self.inner.blocking_read = min_length > 0 || timeout.as_millis() > 0;

        // If both read() and write() are non-blocking, we can safely set
        // O_NONBLOCK once instead of toggling it for every write. We can't
        // leave it set when read() should block, because it ignores the
        // VMIN and VTIME settings.
        if self.inner.blocking_read || self.inner.blocking_write {
            unsafe {
                libc::fcntl(self.inner.fd, libc::F_SETFL, 0);
            }
        } else {
            unsafe {
                libc::fcntl(self.inner.fd, libc::F_SETFL, libc::O_NONBLOCK);
            }
        }

        Ok(())
    }

    /// Sets the blocking mode for subsequent calls to [`write`].
    ///
    /// [`write`] operates in one of two modes, depending on the specified
    /// `blocking` value:
    ///
    /// * **Non-blocking write**. [`write`] returns immediately after
    /// copying as much of the contents of the provided buffer to the output queue
    /// as it's able to fit.
    /// * **Blocking write**. [`write`] blocks until the entire contents of the provided buffer
    /// can be copied to the output queue. If flow control is enabled and the
    /// external device has sent a stop request, the transmission of any waiting data
    /// in the output queue is paused until a start request has been received.
    ///
    /// By default, [`write`] is configured as non-blocking.
    ///
    /// [`write`]: #method.write
    pub fn set_write_mode(&mut self, blocking: bool) -> Result<()> {
        self.inner.blocking_write = blocking;

        // If both read() and write() are non-blocking, we can safely set
        // O_NONBLOCK once instead of toggling it for every write. We can't
        // leave it set when read() should block, because it ignores the
        // VMIN and VTIME settings.
        if self.inner.blocking_read || self.inner.blocking_write {
            unsafe {
                libc::fcntl(self.inner.fd, libc::F_SETFL, 0);
            }
        } else {
            unsafe {
                libc::fcntl(self.inner.fd, libc::F_SETFL, libc::O_NONBLOCK);
            }
        }

        Ok(())
    }

    /// Returns the number of bytes waiting in the input queue.
    pub fn input_len(&self) -> Result<usize> {
        termios::input_len(self.inner.fd)
    }

    /// Returns the number of bytes waiting in the output queue.
    pub fn output_len(&self) -> Result<usize> {
        termios::output_len(self.inner.fd)
    }

    /// Receives incoming data from the external device and stores it in
    /// `buffer`.
    ///
    /// `read` operates in one of four (non)blocking modes, depending on the
    /// settings configured by [`set_read_mode`]. By default, `read` is configured
    /// as non-blocking.
    ///
    /// Returns how many bytes were read.
    ///
    /// [`set_read_mode`]: #method.set_read_mode
    pub fn read(&mut self, buffer: &mut [u8]) -> Result<usize> {
        self.inner.device.read(buffer).or_else(|e| {
            if e.kind() == io::ErrorKind::WouldBlock {
                Ok(0)
            } else {
                Err(Error::Io(e))
            }
        })
    }

    /// Sends the contents of `buffer` to the external device.
    ///
    /// `write` operates in either blocking or non-blocking mode, depending on the
    /// settings configured by [`set_write_mode`]. By default, `write` is configured
    /// as non-blocking.
    ///
    /// Returns how many bytes were written.
    ///
    /// [`set_write_mode`]: #method.set_write_mode
    pub fn write(&mut self, buffer: &[u8]) -> Result<usize> {
        // We only need to toggle O_NONBLOCK when read() is configured as
        // blocking. If read() is non-blocking, either with_path() or
        // set_read_mode() will have already enabled O_NONBLOCK.
        if self.inner.blocking_read && !self.inner.blocking_write {
            unsafe {
                libc::fcntl(self.inner.fd, libc::F_SETFL, libc::O_NONBLOCK);
            }
        }

        let result = self.inner.device.write(buffer).or_else(|e| {
            if e.kind() == io::ErrorKind::WouldBlock {
                Ok(0)
            } else {
                Err(Error::Io(e))
            }
        });

        if self.inner.blocking_read && !self.inner.blocking_write {
            unsafe {
                libc::fcntl(self.inner.fd, libc::F_SETFL, 0);
            }
        }

        result
    }

    /// Blocks until all data in the output queue has been transmitted.
    pub fn drain(&self) -> Result<()> {
        termios::drain(self.inner.fd)
    }

    /// Discards all data in the input and/or output queue.
    pub fn flush(&self, queue_type: Queue) -> Result<()> {
        termios::flush(self.inner.fd, queue_type)
    }
}