1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
//! Accurate sleeping. Only use native sleep as far as it can be trusted, then spin.
//!
//! The problem with `thread::sleep` is it isn't always very accurate, and this accuracy varies
//! on platform and state. Spinning is as accurate as we can get, but consumes the CPU
//! rather ungracefully.
//!
//! This library adds a middle ground, using a configurable native accuracy setting allowing
//! `thread::sleep` to wait the bulk of a sleep time, and spin the final section to guarantee
//! accuracy.
//!
//! # Example: Replace `thread::sleep`
//!
//! The simplest usage with default native accuracy is a drop in replacement for `thread::sleep`.
//! ```no_run
//! # use std::time::Duration;
//! spin_sleep::sleep(Duration::new(1, 12_550_000));
//! ```
//!
//! # Example: Configure
//! More advanced usage, including setting a custom native accuracy, can be achieved by
//! constructing a `SpinSleeper`.
//! ```no_run
//! # use std::time::Duration;
//! // Create a new sleeper that trusts native thread::sleep with 100μs accuracy
//! let spin_sleeper = spin_sleep::SpinSleeper::new(100_000)
//! .with_spin_strategy(spin_sleep::SpinStrategy::YieldThread);
//!
//! // Sleep for 1.01255 seconds, this will:
//! // - thread:sleep for 1.01245 seconds, i.e., 100μs less than the requested duration
//! // - spin until total 1.01255 seconds have elapsed
//! spin_sleeper.sleep(Duration::new(1, 12_550_000));
//! ```
//!
//! Sleep can also be requested in `f64` seconds or `u64` nanoseconds
//! (useful when used with `time` crate)
//!
//! ```no_run
//! # use std::time::Duration;
//! # let spin_sleeper = spin_sleep::SpinSleeper::new(100_000);
//! spin_sleeper.sleep_s(1.01255);
//! spin_sleeper.sleep_ns(1_012_550_000);
//! ```
//!
//! OS-specific default settings should be good enough for most cases.
//! ```
//! # use spin_sleep::SpinSleeper;
//! let sleeper = SpinSleeper::default();
//! # let _ = sleeper;
//! ```
mod loop_helper;
pub use crate::loop_helper::*;
use std::{
thread,
time::{Duration, Instant},
};
/// Marker alias to show the meaning of a `f64` in certain methods.
pub type Seconds = f64;
/// Marker alias to show the meaning of a `f64` in certain methods.
pub type RatePerSecond = f64;
/// Marker alias to show the meaning of a `u64` in certain methods.
pub type Nanoseconds = u64;
/// Marker alias to show the meaning of a `u32` in certain methods.
pub type SubsecondNanoseconds = u32;
/// Accuracy container for spin sleeping. See [crate docs](index.html).
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct SpinSleeper {
native_accuracy_ns: u32,
spin_strategy: SpinStrategy,
}
#[cfg(not(windows))]
const DEFAULT_NATIVE_SLEEP_ACCURACY: SubsecondNanoseconds = 125_000;
/// Asks the OS to put the current thread to sleep for at least the specified amount of time.
/// **Does not spin.**
///
/// Equivalent to [`std::thread::sleep`], with the following exceptions:
/// * **Windows**: Automatically selects the best native sleep accuracy generally achieving ~1ms
/// native sleep accuracy, instead of default ~16ms.
#[cfg(not(windows))]
#[inline]
pub fn native_sleep(duration: Duration) {
thread::sleep(duration)
}
#[cfg(windows)]
static MIN_TIME_PERIOD: once_cell::sync::Lazy<winapi::shared::minwindef::UINT> =
once_cell::sync::Lazy::new(|| unsafe {
use std::mem;
use winapi::um::{mmsystem::*, timeapi::timeGetDevCaps};
let tc_size = mem::size_of::<TIMECAPS>() as u32;
let mut tc = TIMECAPS {
wPeriodMin: 0,
wPeriodMax: 0,
};
if timeGetDevCaps(&mut tc as *mut TIMECAPS, tc_size) == TIMERR_NOERROR {
tc.wPeriodMin
} else {
1
}
});
/// Asks the OS to put the current thread to sleep for at least the specified amount of time.
///
/// Equivalent to [`std::thread::sleep`], with the following exceptions:
/// * **Windows**: Automatically selects the best native sleep accuracy generally achieving ~1ms
/// native sleep accuracy, instead of default ~16ms.
#[cfg(windows)]
#[inline]
pub fn native_sleep(duration: Duration) {
unsafe {
use winapi::um::timeapi::{timeBeginPeriod, timeEndPeriod};
timeBeginPeriod(*MIN_TIME_PERIOD);
thread::sleep(duration);
timeEndPeriod(*MIN_TIME_PERIOD);
}
}
impl Default for SpinSleeper {
/// Constructs new SpinSleeper with defaults suiting the current OS
#[inline]
fn default() -> Self {
#[cfg(windows)]
let accuracy = *MIN_TIME_PERIOD * 1_000_000;
#[cfg(not(windows))]
let accuracy = DEFAULT_NATIVE_SLEEP_ACCURACY;
SpinSleeper::new(accuracy)
}
}
impl SpinSleeper {
/// Constructs new SpinSleeper with the input native sleep accuracy.
/// The lower the `native_accuracy_ns` the more we effectively trust the accuracy of the
/// [`native_sleep`] function.
#[inline]
pub fn new(native_accuracy_ns: SubsecondNanoseconds) -> SpinSleeper {
SpinSleeper {
native_accuracy_ns,
spin_strategy: <_>::default(),
}
}
/// Returns configured native_accuracy_ns.
pub fn native_accuracy_ns(self) -> SubsecondNanoseconds {
self.native_accuracy_ns
}
/// Returns configured spin strategy.
pub fn spin_strategy(self) -> SpinStrategy {
self.spin_strategy
}
/// Returns a spin sleeper with the given [`SpinStrategy`].
///
/// # Example
/// ```no_run
/// use spin_sleep::{SpinSleeper, SpinStrategy};
///
/// let sleeper = SpinSleeper::default().with_spin_strategy(SpinStrategy::SpinLoopHint);
/// ```
pub fn with_spin_strategy(mut self, strategy: SpinStrategy) -> Self {
self.spin_strategy = strategy;
self
}
/// Puts the [current thread to sleep](fn.native_sleep.html) for the duration less the
/// configured native accuracy. Then spins until the specified duration has elapsed.
pub fn sleep(self, duration: Duration) {
let start = Instant::now();
let accuracy = Duration::new(0, self.native_accuracy_ns);
if duration > accuracy {
native_sleep(duration - accuracy);
}
// spin the rest of the duration
while start.elapsed() < duration {
match self.spin_strategy {
SpinStrategy::YieldThread => thread::yield_now(),
SpinStrategy::SpinLoopHint => std::hint::spin_loop(),
}
}
}
/// Puts the [current thread to sleep](fn.native_sleep.html) for the give seconds-duration
/// less the configured native accuracy. Then spins until the specified duration has elapsed.
pub fn sleep_s(self, seconds: Seconds) {
if seconds > 0.0 {
self.sleep(Duration::from_secs_f64(seconds));
}
}
/// Puts the [current thread to sleep](fn.native_sleep.html) for the give nanoseconds-duration
/// less the configured native accuracy. Then spins until the specified duration has elapsed.
pub fn sleep_ns(self, nanoseconds: Nanoseconds) {
let subsec_ns = (nanoseconds % 1_000_000_000) as u32;
let seconds = nanoseconds / 1_000_000_000;
self.sleep(Duration::new(seconds, subsec_ns))
}
}
/// Puts the [current thread to sleep](fn.native_sleep.html) for the duration less the
/// default native accuracy. Then spins until the specified duration has elapsed.
///
/// Convenience function for `SpinSleeper::default().sleep(duration)`. Can directly take the
/// place of `thread::sleep`.
pub fn sleep(duration: Duration) {
SpinSleeper::default().sleep(duration);
}
/// What to do while spinning.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum SpinStrategy {
/// Call [`std::thread::yield_now`] while spinning.
YieldThread,
/// Call [`std::hint::spin_loop`] while spinning.
SpinLoopHint,
}
/// Per-OS default strategy.
/// * Windows `SpinLoopHint`
/// * !Windows `YieldThread`
impl Default for SpinStrategy {
#[inline]
#[cfg(windows)]
fn default() -> Self {
Self::SpinLoopHint
}
#[inline]
#[cfg(not(windows))]
fn default() -> Self {
Self::YieldThread
}
}
// Not run unless specifically enabled with `cargo test --features "nondeterministic_tests"`
// Travis does not do well with these tests, as they require a certain CPU priority.
#[cfg(feature = "nondeterministic_tests")]
#[cfg(test)]
mod spin_sleep_test {
use super::*;
// The worst case error is unbounded even when spinning, but this accuracy is reasonable
// for most platforms.
const ACCEPTABLE_DELTA_NS: SubsecondNanoseconds = 50_000;
// Since on spin performance is not guaranteed it suffices that the assertions are valid
// 'most of the time'. This macro should avoid most 1-off failures.
macro_rules! passes_eventually {
($test:expr) => {{
let mut error = None;
for _ in 0..50 {
match ::std::panic::catch_unwind(|| $test) {
Ok(_) => break,
Err(err) => {
// test is failing, maybe due to spin unreliability
error = error.or(Some(err));
thread::sleep(Duration::new(0, 1000));
}
}
}
assert!(
error.is_none(),
"Test failed 50/50 times: {:?}",
error.unwrap()
);
}};
}
#[test]
fn sleep_small() {
passes_eventually!({
let ns_duration = 12_345_678;
let ps = SpinSleeper::new(20_000_000);
ps.sleep(Duration::new(0, 1000)); // warm up
let before = Instant::now();
ps.sleep(Duration::new(0, ns_duration));
let elapsed = before.elapsed();
println!("Actual: {:?}", elapsed);
assert!(elapsed <= Duration::new(0, ns_duration + ACCEPTABLE_DELTA_NS));
assert!(elapsed >= Duration::new(0, ns_duration - ACCEPTABLE_DELTA_NS));
});
}
#[test]
fn sleep_big() {
passes_eventually!({
let ns_duration = 212_345_678;
let ps = SpinSleeper::new(20_000_000);
ps.sleep(Duration::new(0, 1000)); // warm up
let before = Instant::now();
ps.sleep(Duration::new(1, ns_duration));
let elapsed = before.elapsed();
println!("Actual: {:?}", elapsed);
assert!(elapsed <= Duration::new(1, ns_duration + ACCEPTABLE_DELTA_NS));
assert!(elapsed >= Duration::new(1, ns_duration - ACCEPTABLE_DELTA_NS));
});
}
#[test]
fn sleep_s() {
passes_eventually!({
let ns_duration = 12_345_678_f64;
let ps = SpinSleeper::new(20_000_000);
ps.sleep_s(0.000001); // warm up
let before = Instant::now();
ps.sleep_s(ns_duration / 1_000_000_000_f64);
let elapsed = before.elapsed();
println!("Actual: {:?}", elapsed);
assert!(elapsed <= Duration::new(0, ns_duration.round() as u32 + ACCEPTABLE_DELTA_NS));
assert!(elapsed >= Duration::new(0, ns_duration.round() as u32 - ACCEPTABLE_DELTA_NS));
});
}
#[test]
fn sleep_ns() {
passes_eventually!({
let ns_duration: u32 = 12_345_678;
let ps = SpinSleeper::new(20_000_000);
ps.sleep_ns(1000); // warm up
let before = Instant::now();
ps.sleep_ns(ns_duration as u64);
let elapsed = before.elapsed();
println!("Actual: {:?}", elapsed);
assert!(elapsed <= Duration::new(0, ns_duration + ACCEPTABLE_DELTA_NS));
assert!(elapsed >= Duration::new(0, ns_duration - ACCEPTABLE_DELTA_NS));
});
}
}