1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
//! Interface for the GPIO peripheral.
//!
//! To ensure fast performance, RPPAL controls the GPIO peripheral by directly
//! accessing the registers through either `/dev/gpiomem` or `/dev/mem`. GPIO interrupts
//! are configured using the `gpiochip` character device.
//!
//! ## Pins
//!
//! GPIO pins are retrieved from a [`Gpio`] instance by their BCM GPIO number by calling
//! [`Gpio::get`]. The returned unconfigured [`Pin`] can be used to read the pin's
//! mode and logic level. Converting the [`Pin`] to an [`InputPin`], [`OutputPin`] or
//! [`IoPin`] through the various `into_` methods available on [`Pin`] configures the
//! appropriate mode, and provides access to additional methods relevant to the selected pin mode.
//!
//! Retrieving a GPIO pin with [`Gpio::get`] grants access to the pin through an owned [`Pin`]
//! instance. If the pin is already in use, or the GPIO peripheral doesn't expose a pin with
//! the specified number, [`Gpio::get`] returns `Err(`[`Error::PinNotAvailable`]`)`. After a [`Pin`]
//! (or a derived [`InputPin`], [`OutputPin`] or [`IoPin`]) goes out of scope, it can be
//! retrieved again through another [`Gpio::get`] call.
//!
//! By default, pins are reset to their original state when they go out of scope.
//! Use [`InputPin::set_reset_on_drop(false)`], [`OutputPin::set_reset_on_drop(false)`]
//! or [`IoPin::set_reset_on_drop(false)`], respectively, to disable this behavior.
//! Note that `drop` methods aren't called when a process is abnormally terminated (for
//! instance when a `SIGINT` signal isn't caught).
//!
//! ## Interrupts
//!
//! [`InputPin`] supports both synchronous and asynchronous interrupt handlers.
//!
//! Synchronous (blocking) interrupt triggers are configured using [`InputPin::set_interrupt`].
//! An interrupt trigger for a single pin can be polled with [`InputPin::poll_interrupt`],
//! which blocks the current thread until a trigger event occurs, or until the timeout period
//! elapses. [`Gpio::poll_interrupts`] should be used when multiple pins have been configured
//! for synchronous interrupt triggers, and need to be polled simultaneously.
//!
//! Asynchronous interrupt triggers are configured using [`InputPin::set_async_interrupt`]. The
//! specified callback function will be executed on a separate thread when a trigger event occurs.
//!
//! ## Software-based PWM
//!
//! [`OutputPin`] and [`IoPin`] feature a software-based PWM implementation. The PWM signal is
//! emulated by toggling the pin's output state on a separate thread, combined with sleep and
//! busy-waiting.
//!
//! Software-based PWM is inherently inaccurate on a multi-threaded OS due to scheduling/preemption.
//! If an accurate or faster PWM signal is required, use the hardware [`Pwm`] peripheral instead.
//!
//! PWM threads may occasionally sleep longer than needed. If the active or inactive part of the
//! signal is shorter than 250 µs, only busy-waiting is used, which will increase CPU usage. Due to
//! function call overhead, typical jitter is expected to be up to 10 µs on debug builds, and up to
//! 2 µs on release builds.
//!
//! ## Examples
//!
//! Basic example:
//!
//! ```
//! use std::thread;
//! use std::time::Duration;
//!
//! use rppal::gpio::Gpio;
//!
//! # fn main() -> rppal::gpio::Result<()> {
//! let gpio = Gpio::new()?;
//! let mut pin = gpio.get(23)?.into_output();
//!
//! pin.set_high();
//! thread::sleep(Duration::from_secs(1));
//! pin.set_low();
//! # Ok(())
//! # }
//! ```
//!
//! Additional examples can be found in the `examples` directory.
//!
//! ## Troubleshooting
//!
//! ### Permission denied
//!
//! In recent releases of Raspberry Pi OS (December 2017 or later), users that are part of the
//! `gpio` group (like the default `pi` user) can access `/dev/gpiomem` and
//! `/dev/gpiochipN` (N = 0-2) without needing additional permissions. If you encounter any
//! [`PermissionDenied`] errors when constructing a new [`Gpio`] instance, either the current
//! user isn't a member of the `gpio` group, or your Raspberry Pi OS distribution isn't
//! up-to-date and doesn't automatically configure permissions for the above-mentioned
//! files. Updating Raspberry Pi OS to the latest release should fix any permission issues.
//! Alternatively, although not recommended, you can run your application with superuser
//! privileges by using `sudo`.
//!
//! If you're unable to update Raspberry Pi OS and its packages (namely `raspberrypi-sys-mods`) to
//! the latest available release, or updating hasn't fixed the issue, you might be able to
//! manually update your `udev` rules to set the appropriate permissions. More information
//! can be found at [raspberrypi/linux#1225] and [raspberrypi/linux#2289].
//!
//! [`Error::PinNotAvailable`]: enum.Error.html#variant.PinNotAvailable
//! [`PermissionDenied`]: enum.Error.html#variant.PermissionDenied
//! [raspberrypi/linux#1225]: https://github.com/raspberrypi/linux/issues/1225
//! [raspberrypi/linux#2289]: https://github.com/raspberrypi/linux/issues/2289
//! [`Gpio`]: struct.Gpio.html
//! [`Gpio::get`]: struct.Gpio.html#method.get
//! [`Gpio::poll_interrupts`]: struct.Gpio.html#method.poll_interrupts
//! [`Pin`]: struct.Pin.html
//! [`InputPin`]: struct.InputPin.html
//! [`InputPin::set_reset_on_drop(false)`]: struct.InputPin.html#method.set_reset_on_drop
//! [`InputPin::set_interrupt`]: struct.InputPin.html#method.set_interrupt
//! [`InputPin::poll_interrupt`]: struct.InputPin.html#method.poll_interrupt
//! [`InputPin::set_async_interrupt`]: struct.InputPin.html#method.set_async_interrupt
//! [`OutputPin`]: struct.OutputPin.html
//! [`OutputPin::set_reset_on_drop(false)`]: struct.OutputPin.html#method.set_reset_on_drop
//! [`IoPin`]: struct.IoPin.html
//! [`IoPin::set_reset_on_drop(false)`]: struct.IoPin.html#method.set_reset_on_drop
//! [`Pwm`]: ../pwm/struct.Pwm.html
#![allow(clippy::missing_transmute_annotations)]

use std::error;
use std::fmt;
use std::io;
use std::mem::MaybeUninit;
use std::ops::Not;
use std::os::unix::io::AsRawFd;
use std::result;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::{Arc, Mutex, Once, Weak};
use std::time::Duration;

mod epoll;
mod gpiomem;
#[cfg(any(
    feature = "embedded-hal-0",
    feature = "embedded-hal",
    feature = "embedded-hal-nb"
))]
mod hal;
#[cfg(feature = "hal-unproven")]
mod hal_unproven;
mod interrupt;
mod ioctl;
mod pin;
mod soft_pwm;

use crate::system;
use crate::system::DeviceInfo;

pub use self::pin::{InputPin, IoPin, OutputPin, Pin};

/// Errors that can occur when accessing the GPIO peripheral.
#[derive(Debug)]
pub enum Error {
    /// Unknown model.
    ///
    /// The Raspberry Pi model or SoC can't be identified. Support for
    /// new models is usually added shortly after they are officially
    /// announced and available to the public. Make sure you're using
    /// the latest release of RPPAL.
    ///
    /// You may also encounter this error if your Linux distribution
    /// doesn't provide any of the common user-accessible system files
    /// that are used to identify the model and SoC.
    UnknownModel,
    /// Pin is already in use.
    ///
    /// The pin is already in use elsewhere in your application. If the pin is currently in
    /// use, you may retrieve it again after the [`Pin`] (or a derived [`InputPin`],
    /// [`OutputPin`] or [`IoPin`]) instance goes out of scope.
    ///
    /// [`Pin`]: struct.Pin.html
    /// [`InputPin`]: struct.InputPin.html
    /// [`OutputPin`]: struct.OutputPin.html
    /// [`IoPin`]: struct.IoPin.html
    PinUsed(u8),
    /// Pin is not available.
    ///
    /// The GPIO peripheral doesn't expose a GPIO pin with the specified number. Pins are
    /// addressed by their BCM GPIO numbers, rather than their physical location on the GPIO
    /// header.
    PinNotAvailable(u8),
    /// Permission denied when opening `/dev/gpiomem`, `/dev/mem` or `/dev/gpiochipN` for
    /// read/write access.
    ///
    /// More information on possible causes for this error can be found [here].
    ///
    /// [here]: index.html#permission-denied
    PermissionDenied(String),
    /// I/O error.
    Io(io::Error),
    /// Thread panicked.
    ThreadPanic,
}

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            Error::UnknownModel => write!(f, "Unknown Raspberry Pi model"),
            Error::PinUsed(pin) => write!(f, "Pin {} is already in use", pin),
            Error::PinNotAvailable(pin) => write!(f, "Pin {} is not available", pin),
            Error::PermissionDenied(ref path) => write!(f, "Permission denied: {}", path),
            Error::Io(ref err) => write!(f, "I/O error: {}", err),
            Error::ThreadPanic => write!(f, "Thread panicked"),
        }
    }
}

impl error::Error for Error {}

impl From<io::Error> for Error {
    fn from(err: io::Error) -> Error {
        Error::Io(err)
    }
}

impl From<system::Error> for Error {
    fn from(_err: system::Error) -> Error {
        Error::UnknownModel
    }
}

/// Result type returned from methods that can have `rppal::gpio::Error`s.
pub type Result<T> = result::Result<T, Error>;

/// Pin modes.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[repr(u8)]
pub enum Mode {
    Input,
    Output,
    Alt0,
    Alt1,
    Alt2,
    Alt3,
    Alt4,
    Alt5,
    Alt6,
    Alt7,
    Alt8,
    Null,
}

impl fmt::Display for Mode {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            Mode::Input => write!(f, "In"),
            Mode::Output => write!(f, "Out"),
            Mode::Alt0 => write!(f, "Alt0"),
            Mode::Alt1 => write!(f, "Alt1"),
            Mode::Alt2 => write!(f, "Alt2"),
            Mode::Alt3 => write!(f, "Alt3"),
            Mode::Alt4 => write!(f, "Alt4"),
            Mode::Alt5 => write!(f, "Alt5"),
            Mode::Alt6 => write!(f, "Alt6"),
            Mode::Alt7 => write!(f, "Alt7"),
            Mode::Alt8 => write!(f, "Alt8"),
            Mode::Null => write!(f, "Null"),
        }
    }
}

/// Pin logic levels.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[repr(u8)]
pub enum Level {
    Low = 0,
    High = 1,
}

impl From<bool> for Level {
    fn from(e: bool) -> Level {
        if e {
            Level::High
        } else {
            Level::Low
        }
    }
}

impl fmt::Display for Level {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            Level::Low => write!(f, "Low"),
            Level::High => write!(f, "High"),
        }
    }
}

impl From<u8> for Level {
    fn from(value: u8) -> Self {
        if value == 0 {
            Level::Low
        } else {
            Level::High
        }
    }
}

impl Not for Level {
    type Output = Level;

    fn not(self) -> Level {
        match self {
            Level::Low => Level::High,
            Level::High => Level::Low,
        }
    }
}

/// Built-in pull-up/pull-down resistor states.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum Bias {
    Off = 0b00,
    PullDown = 0b01,
    PullUp = 0b10,
}

impl fmt::Display for Bias {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            Bias::Off => write!(f, "Off"),
            Bias::PullDown => write!(f, "PullDown"),
            Bias::PullUp => write!(f, "PullUp"),
        }
    }
}

/// Interrupt trigger conditions.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum Trigger {
    Disabled = 0,
    RisingEdge = 1,
    FallingEdge = 2,
    Both = 3,
}

impl fmt::Display for Trigger {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            Trigger::Disabled => write!(f, "Disabled"),
            Trigger::RisingEdge => write!(f, "RisingEdge"),
            Trigger::FallingEdge => write!(f, "FallingEdge"),
            Trigger::Both => write!(f, "Both"),
        }
    }
}

/// Interrupt trigger event.
#[derive(Debug, Copy, Clone)]
pub struct Event {
    /// Best estimate of time of event occurrence, measured in elapsed time since the system was booted.
    pub timestamp: Duration,
    /// Sequence number for this event in the sequence of interrupt trigger events for this pin.
    pub seqno: u32,
    /// Interrupt trigger. This will contain either [Trigger::RisingEdge] or [Trigger::FallingEdge].
    pub trigger: Trigger,
}

impl Default for Event {
    fn default() -> Self {
        Self {
            timestamp: Duration::default(),
            seqno: 0,
            trigger: Trigger::Both,
        }
    }
}

// Store Gpio's state separately, so we can conveniently share it through
// a cloned Arc.
pub(crate) struct GpioState {
    gpio_mem: Box<dyn gpiomem::GpioRegisters>,
    cdev: std::fs::File,
    sync_interrupts: Mutex<interrupt::EventLoop>,
    pins_taken: [AtomicBool; u8::MAX as usize],
    gpio_lines: u8,
}

impl fmt::Debug for GpioState {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("EventLoop")
            .field("gpio_mem", &self.gpio_mem)
            .field("cdev", &self.cdev)
            .field("sync_interrupts", &self.sync_interrupts)
            .field("pins_taken", &format_args!("{{ .. }}"))
            .field("gpio_lines", &self.gpio_lines)
            .finish()
    }
}

/// Provides access to the Raspberry Pi's GPIO peripheral.
#[derive(Clone, Debug)]
pub struct Gpio {
    inner: Arc<GpioState>,
}

impl Gpio {
    /// Constructs a new `Gpio`.
    pub fn new() -> Result<Gpio> {
        // Replace this when std::sync::SyncLazy is stabilized. https://github.com/rust-lang/rust/issues/74465

        // Shared state between Gpio and Pin instances. GpioState is dropped after
        // all Gpio and Pin instances go out of scope, guaranteeing we won't have
        // any pins simultaneously using different EventLoop or GpioMem instances.
        static mut GPIO_STATE: MaybeUninit<Mutex<Weak<GpioState>>> = MaybeUninit::uninit();
        static ONCE: Once = Once::new();

        // call_once is thread-safe, guaranteed to be called only once, and memory writes performed
        // by the closure can be observed by other threads after execution completes.
        let mut weak_state = unsafe {
            ONCE.call_once(|| {
                GPIO_STATE.write(Mutex::new(Weak::new()));
            });

            // GPIO_STATE will always be initialized at this point.
            GPIO_STATE.assume_init_ref().lock().unwrap()
        };

        // Clone a strong reference if a GpioState instance already exists, otherwise
        // initialize it here so we can return any relevant errors.
        if let Some(ref state) = weak_state.upgrade() {
            Ok(Gpio {
                inner: state.clone(),
            })
        } else {
            let device_info = DeviceInfo::new().map_err(|_| Error::UnknownModel)?;

            let gpio_mem: Box<dyn gpiomem::GpioRegisters> = match device_info.gpio_interface() {
                system::GpioInterface::Bcm => Box::new(gpiomem::bcm::GpioMem::open()?),
                system::GpioInterface::Rp1 => Box::new(gpiomem::rp1::GpioMem::open()?),
            };

            let cdev = ioctl::find_gpiochip()?;
            let sync_interrupts = Mutex::new(interrupt::EventLoop::new(
                cdev.as_raw_fd(),
                u8::MAX as usize,
            )?);
            let pins_taken = init_array!(AtomicBool::new(false), u8::MAX as usize);
            let gpio_lines = device_info.gpio_lines();

            let gpio_state = Arc::new(GpioState {
                gpio_mem,
                cdev,
                sync_interrupts,
                pins_taken,
                gpio_lines,
            });

            // Store a weak reference to our state. This gets dropped when
            // all Gpio and Pin instances go out of scope.
            *weak_state = Arc::downgrade(&gpio_state);

            Ok(Gpio { inner: gpio_state })
        }
    }

    /// Returns a [`Pin`] for the specified BCM GPIO number.
    ///
    /// Retrieving a GPIO pin grants access to the pin through an owned [`Pin`] instance.
    /// If the pin is already in use, `get` returns `Err(`[`Error::PinUsed`]`)`.
    /// After a [`Pin`] (or a derived [`InputPin`], [`OutputPin`] or [`IoPin`]) goes out
    /// of scope, it can be retrieved again through another `get` call.
    ///
    /// [`Pin`]: struct.Pin.html
    /// [`InputPin`]: struct.InputPin.html
    /// [`OutputPin`]: struct.OutputPin.html
    /// [`IoPin`]: struct.IoPin.html
    /// [`Error::PinUsed`]: enum.Error.html#variant.PinUsed
    pub fn get(&self, pin: u8) -> Result<Pin> {
        if pin >= self.inner.gpio_lines {
            return Err(Error::PinNotAvailable(pin));
        }

        // Returns an error if the pin is already taken, otherwise atomically sets it to true here
        if self.inner.pins_taken[pin as usize]
            .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
            .is_err()
        {
            // Pin is taken
            Err(Error::PinUsed(pin))
        } else {
            // Return an owned Pin
            Ok(Pin::new(pin, self.inner.clone()))
        }
    }

    /// Blocks until an interrupt is triggered on any of the specified pins, or until a timeout occurs.
    ///
    /// Only pins that have been previously configured for synchronous interrupts using [`InputPin::set_interrupt`]
    /// can be polled. Asynchronous interrupt triggers are automatically polled on a separate thread.
    ///
    /// Calling `poll_interrupts` blocks any other calls to `poll_interrupts` or [`InputPin::poll_interrupt`] until
    /// it returns. If you need to poll multiple pins simultaneously on different threads, consider using
    /// asynchronous interrupts with [`InputPin::set_async_interrupt`] instead.
    ///
    /// Setting `reset` to `false` returns any cached interrupt trigger events if available. Setting `reset` to `true`
    /// clears all cached events before polling for new events.
    ///
    /// The `timeout` duration indicates how long the call to `poll_interrupts` will block while waiting
    /// for interrupt trigger events, after which an `Ok(None)` is returned.
    /// `timeout` can be set to `None` to wait indefinitely.
    ///
    /// When an interrupt event is triggered, `poll_interrupts` returns
    /// `Ok((&`[`InputPin`]`, `[`Event`]`))` containing the corresponding pin and trigger event details. If multiple events
    /// trigger at the same time, only the first one is returned. The remaining events are cached and will be returned
    /// the next time [`InputPin::poll_interrupt`] or `poll_interrupts` is called.
    ///
    /// [`InputPin::set_interrupt`]: struct.InputPin.html#method.set_interrupt
    /// [`InputPin::poll_interrupt`]: struct.InputPin.html#method.poll_interrupt
    /// [`InputPin::set_async_interrupt`]: struct.InputPin.html#method.set_async_interrupt
    /// [`InputPin`]: struct.InputPin.html
    /// [`Event`]: struct.Event.html
    pub fn poll_interrupts<'a>(
        &self,
        pins: &[&'a InputPin],
        reset: bool,
        timeout: Option<Duration>,
    ) -> Result<Option<(&'a InputPin, Event)>> {
        (*self.inner.sync_interrupts.lock().unwrap()).poll(pins, reset, timeout)
    }
}