1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
//! Interface for the PWM peripheral.
//!
//! RPPAL controls the Raspberry Pi's PWM peripheral through the `pwm` sysfs
//! interface.
//!
//! ## PWM channels
//!
//! The BCM283x SoC supports two hardware PWM channels. By default, both channels
//! are disabled. To enable only PWM0 on its default pin (BCM GPIO 18, physical pin 12),
//! add `dtoverlay=pwm` to `/boot/firmware/config.txt` on Raspberry Pi OS or `/boot/firmware/usercfg.txt` on
//! Ubuntu. If you need both PWM channels, replace `pwm` with `pwm-2chan`, which enables PWM0 on BCM
//! GPIO 18 (physical pin 12), and PWM1 on BCM GPIO 19 (physical pin 35). More details on enabling
//! and configuring PWM on other GPIO pins than the default ones can be found in
//! `/boot/overlays/README`.
//!
//! The Raspberry Pi's analog audio output uses both PWM channels. Playing audio and
//! simultaneously accessing a PWM channel may cause issues.
//!
//! Some of the GPIO pins capable of supporting hardware PWM can also be configured for
//! use with other peripherals. Be careful not to enable two peripherals on the same pin
//! at the same time.
//!
//! ## Troubleshooting
//!
//! ### Permission denied
//!
//! If [`new`] returns an `io::ErrorKind::PermissionDenied` error, make sure
//! `/sys/class/pwm` and its subdirectories has the appropriate permissions for the current user.
//! Alternatively, you can launch your application using `sudo`.
//!
//! ### Not found
//!
//! If [`new`] returns an `io::ErrorKind::NotFound` error, you may have
//! forgotten to enable the selected PWM channel. The configuration options
//! to enable either of the two PWM channels are listed above.
//!
//! [`new`]: struct.Pwm.html#method.new
use std::error;
use std::fmt;
use std::io;
use std::result;
use std::time::Duration;
#[cfg(any(
feature = "embedded-hal-0",
feature = "embedded-hal",
feature = "embedded-hal-nb"
))]
mod hal;
#[cfg(feature = "hal-unproven")]
mod hal_unproven;
mod sysfs;
use crate::system::DeviceInfo;
const NANOS_PER_SEC: f64 = 1_000_000_000.0;
/// Errors that can occur when accessing the PWM peripheral.
#[derive(Debug)]
pub enum Error {
/// I/O error.
Io(io::Error),
/// Unknown model.
///
/// The Raspberry Pi model or SoC can't be identified. Support for
/// new models is usually added shortly after they are officially
/// announced and available to the public. Make sure you're using
/// the latest release of RPPAL.
///
/// You may also encounter this error if your Linux distribution
/// doesn't provide any of the common user-accessible system files
/// that are used to identify the model and SoC.
UnknownModel,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
Error::Io(ref err) => write!(f, "I/O error: {}", err),
Error::UnknownModel => write!(f, "Unknown Raspberry Pi model"),
}
}
}
impl error::Error for Error {}
impl From<io::Error> for Error {
fn from(err: io::Error) -> Error {
Error::Io(err)
}
}
/// Result type returned from methods that can have `pwm::Error`s.
pub type Result<T> = result::Result<T, Error>;
/// PWM channels.
///
/// More information on enabling and configuring the PWM channels can be
/// found [here].
///
/// [here]: index.html
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum Channel {
Pwm0 = 0,
Pwm1 = 1,
}
impl fmt::Display for Channel {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
Channel::Pwm0 => write!(f, "Pwm0"),
Channel::Pwm1 => write!(f, "Pwm1"),
}
}
}
/// Output polarities.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum Polarity {
Normal,
Inverse,
}
impl fmt::Display for Polarity {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
Polarity::Normal => write!(f, "Normal"),
Polarity::Inverse => write!(f, "Inverse"),
}
}
}
/// Provides access to the Raspberry Pi's PWM peripheral.
///
/// Before using `Pwm`, make sure the selected PWM channel has been configured
/// and activated. More information can be found [here].
///
/// The `embedded-hal` trait implementations for `Pwm` can be enabled by specifying
/// the optional `hal` feature in the dependency declaration for the `rppal` crate.
///
/// [here]: index.html
#[derive(Debug)]
pub struct Pwm {
chip: u8,
channel: u8,
reset_on_drop: bool,
}
impl Pwm {
/// Constructs a new `Pwm`.
///
/// `new` doesn't change the channel's period, pulse width or polarity. The channel
/// will remain disabled until [`enable`] is called.
///
/// [`enable`]: #method.enable
pub fn new(channel: Channel) -> Result<Pwm> {
// Select chip/channel based on Pi model
let device_info = DeviceInfo::new().map_err(|_| Error::UnknownModel)?;
let chip = device_info.pwm_chip();
let channel = device_info.pwm_channels()[channel as usize];
sysfs::export(chip, channel)?;
let pwm = Pwm {
chip,
channel,
reset_on_drop: true,
};
// Always reset "enable" to 0. The sysfs interface has a bug where a previous
// export may have left "enable" as 1 after unexporting. On the next export,
// "enable" is still set to 1, even though the channel isn't enabled.
let _ = pwm.disable();
Ok(pwm)
}
/// Constructs a new `Pwm` using the specified settings.
///
/// `period` indicates the time it takes for the PWM channel to complete one cycle.
///
/// `pulse_width` indicates the amount of time the PWM channel is active during a
/// single period.
///
/// `polarity` configures the active logic level as either high ([`Normal`])
/// or low ([`Inverse`]).
///
/// `enabled` enables PWM on the selected channel. If `enabled` is set to `false`,
/// the channel will remain disabled until [`enable`] is called.
///
/// This method will fail if `period` is shorter than `pulse_width`.
///
/// [`Normal`]: enum.Polarity.html#variant.Normal
/// [`Inverse`]: enum.Polarity.html#variant.Inverse
/// [`enable`]: #method.enable
pub fn with_period(
channel: Channel,
period: Duration,
pulse_width: Duration,
polarity: Polarity,
enabled: bool,
) -> Result<Pwm> {
let pwm = Pwm::new(channel)?;
// Set pulse width to 0 first in case the new period is shorter than the current pulse width
let _ = sysfs::set_pulse_width(pwm.chip, pwm.channel, 0);
pwm.set_period(period)?;
pwm.set_pulse_width(pulse_width)?;
pwm.set_polarity(polarity)?;
if enabled {
pwm.enable()?;
}
Ok(pwm)
}
/// Constructs a new `Pwm` using the specified settings.
///
/// `with_frequency` is a convenience method that converts `frequency` to a period,
/// and calculates the duty cycle as a percentage of the frequency.
///
/// `frequency` is specified in hertz (Hz).
///
/// `duty_cycle` is specified as a floating point value between `0.0` (0%) and `1.0` (100%).
///
/// `polarity` configures the active logic level as either high ([`Normal`])
/// or low ([`Inverse`]).
///
/// `enabled` enables PWM on the selected channel. If `enabled` is set to `false`,
/// the channel will remain disabled until [`enable`] is called.
///
/// [`Normal`]: enum.Polarity.html#variant.Normal
/// [`Inverse`]: enum.Polarity.html#variant.Inverse
/// [`enable`]: #method.enable
pub fn with_frequency(
channel: Channel,
frequency: f64,
duty_cycle: f64,
polarity: Polarity,
enabled: bool,
) -> Result<Pwm> {
let pwm = Pwm::new(channel)?;
// Set pulse width to 0 first in case the new period is shorter than the current pulse width
let _ = sysfs::set_pulse_width(pwm.chip, pwm.channel, 0);
// Convert to nanoseconds
let period = if frequency == 0.0 {
0.0
} else {
(1.0 / frequency) * NANOS_PER_SEC
};
let pulse_width = period * duty_cycle.clamp(0.0, 1.0);
sysfs::set_period(pwm.chip, pwm.channel, period as u64)?;
sysfs::set_pulse_width(pwm.chip, pwm.channel, pulse_width as u64)?;
pwm.set_polarity(polarity)?;
if enabled {
pwm.enable()?;
}
Ok(pwm)
}
/// Returns the period.
pub fn period(&self) -> Result<Duration> {
Ok(Duration::from_nanos(sysfs::period(
self.chip,
self.channel,
)?))
}
/// Sets the period.
///
/// `period` indicates the time it takes for the PWM channel to complete one cycle.
///
/// This method will fail if `period` is shorter than the current pulse width.
pub fn set_period(&self, period: Duration) -> Result<()> {
sysfs::set_period(
self.chip,
self.channel,
u64::from(period.subsec_nanos())
.saturating_add(period.as_secs().saturating_mul(NANOS_PER_SEC as u64)),
)?;
Ok(())
}
/// Returns the pulse width.
pub fn pulse_width(&self) -> Result<Duration> {
Ok(Duration::from_nanos(sysfs::pulse_width(
self.chip,
self.channel,
)?))
}
/// Sets the pulse width.
///
/// `pulse_width` indicates the amount of time the PWM channel is active during a
/// single period.
///
/// This method will fail if `pulse_width` is longer than the current period.
pub fn set_pulse_width(&self, pulse_width: Duration) -> Result<()> {
sysfs::set_pulse_width(
self.chip,
self.channel,
u64::from(pulse_width.subsec_nanos())
.saturating_add(pulse_width.as_secs().saturating_mul(NANOS_PER_SEC as u64)),
)?;
Ok(())
}
/// Returns the frequency.
///
/// `frequency` is a convenience method that calculates the frequency in hertz (Hz)
/// based on the configured period.
pub fn frequency(&self) -> Result<f64> {
let period = sysfs::period(self.chip, self.channel)? as f64;
Ok(if period == 0.0 {
0.0
} else {
1.0 / (period / NANOS_PER_SEC)
})
}
/// Sets the frequency and duty cycle.
///
/// `set_frequency` is a convenience method that converts `frequency` to a period,
/// and calculates the duty cycle as a percentage of the frequency.
///
/// `frequency` is specified in hertz (Hz).
///
/// `duty_cycle` is specified as a floating point value between `0.0` (0%) and `1.0` (100%).
pub fn set_frequency(&self, frequency: f64, duty_cycle: f64) -> Result<()> {
// Set duty cycle to 0 first in case the new period is shorter than the current duty cycle
let _ = sysfs::set_pulse_width(self.chip, self.channel, 0);
// Convert to nanoseconds
let period = if frequency == 0.0 {
0.0
} else {
(1.0 / frequency) * NANOS_PER_SEC
};
let pulse_width = period * duty_cycle.clamp(0.0, 1.0);
sysfs::set_period(self.chip, self.channel, period as u64)?;
sysfs::set_pulse_width(self.chip, self.channel, pulse_width as u64)?;
Ok(())
}
/// Returns the duty cycle.
///
/// `duty_cycle` is a convenience method that calculates the duty cycle as a
/// floating point value between `0.0` (0%) and `1.0` (100%) based on the configured
/// period and pulse width.
pub fn duty_cycle(&self) -> Result<f64> {
let period = sysfs::period(self.chip, self.channel)? as f64;
let pulse_width = sysfs::pulse_width(self.chip, self.channel)? as f64;
Ok(if period == 0.0 {
0.0
} else {
(pulse_width / period).clamp(0.0, 1.0)
})
}
/// Sets the duty cycle.
///
/// `set_duty_cycle` is a convenience method that converts `duty_cycle` to a
/// pulse width based on the configured period.
///
/// `duty_cycle` is specified as a floating point value between `0.0` (0%) and `1.0` (100%).
pub fn set_duty_cycle(&self, duty_cycle: f64) -> Result<()> {
let period = sysfs::period(self.chip, self.channel)? as f64;
let pulse_width = period * duty_cycle.clamp(0.0, 1.0);
sysfs::set_pulse_width(self.chip, self.channel, pulse_width as u64)?;
Ok(())
}
/// Returns the polarity.
pub fn polarity(&self) -> Result<Polarity> {
Ok(sysfs::polarity(self.chip, self.channel)?)
}
/// Sets the polarity.
///
/// `polarity` configures the active logic level as either high
/// ([`Normal`]) or low ([`Inverse`]).
///
/// [`Normal`]: enum.Polarity.html#variant.Normal
/// [`Inverse`]: enum.Polarity.html#variant.Inverse
pub fn set_polarity(&self, polarity: Polarity) -> Result<()> {
sysfs::set_polarity(self.chip, self.channel, polarity)?;
Ok(())
}
/// Returns `true` if the PWM channel is enabled.
pub fn is_enabled(&self) -> Result<bool> {
Ok(sysfs::enabled(self.chip, self.channel)?)
}
/// Enables the PWM channel.
pub fn enable(&self) -> Result<()> {
sysfs::set_enabled(self.chip, self.channel, true)?;
Ok(())
}
/// Disables the PWM channel.
pub fn disable(&self) -> Result<()> {
sysfs::set_enabled(self.chip, self.channel, false)?;
Ok(())
}
/// Returns the value of `reset_on_drop`.
pub fn reset_on_drop(&self) -> bool {
self.reset_on_drop
}
/// When enabled, disables the PWM channel when the `Pwm` instance
/// goes out of scope. By default, this is set to `true`.
///
/// ## Note
///
/// Drop methods aren't called when a process is abnormally terminated, for
/// instance when a user presses <kbd>Ctrl</kbd> + <kbd>C</kbd>, and the `SIGINT` signal
/// isn't caught. You can catch those using crates such as [`simple_signal`].
///
/// [`simple_signal`]: https://crates.io/crates/simple-signal
pub fn set_reset_on_drop(&mut self, reset_on_drop: bool) {
self.reset_on_drop = reset_on_drop;
}
}
impl Drop for Pwm {
fn drop(&mut self) {
if self.reset_on_drop {
let _ = sysfs::set_enabled(self.chip, self.channel, false);
let _ = sysfs::unexport(self.chip, self.channel);
}
}
}